
Wavelet
Analyzing the time-frequency lead–lag relationship between oil and
agricultural commodities -wavelet

FEATURE EXTRACTION BASED ON MORLET WAVELET
AND ITS APPLICATION FOR MECHANICAL FAULT
DIAGNOSIS ⇒ wavelet공식 이해

Morlet WAVELET Coherence Analysis
요약

시간 국지화(time-localized) 정보를 보존하면서도 주파수 정보까지 제공하여, 시간 국
지화 정보를 소실하는 푸리에(Fourier) 기반 접근 방식의 한계를 극복합니다.

언제 발생했는지와  영향력은 어디까지 미치는지를 알려줍니다.

1. mother wavelet

   

실수부⇒모양(크기)  ,  허수부⇒위상(Angle, 타이밍,순서) ⇒즉, 그래프가 올라가나 내려가
나 알려줌.

 

2. son wavelet (mother wavelet를 팽창 및 변환) 
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    (a:scale factor (양옆으로 늘어남),    b: time location(그래프의 x좌표 이동))

3. wavelet 변환값 (x(t)는 원본 데이터 ⇒z-score적용)

 참고⇒ ﻿

 4.1 wavelet 허용조건

 4.2 mother wavelet에 푸리에 변환 적용

5. cross wavelet transformation (두 표본의 상관관계)
⇒값이 0에 가까울수록 더 약한 상관 관계, 1에 가까울수록 더 강한 상관 관계를 나타냄

5. ﻿

S:시간과 스케일 모두에서 컨볼루션에 의해 달성되는 Smoothing parameter

1. 숨겨진 패턴을 찾는 열쇠: 특징 추출 (Feature Discovery)

웨이블릿 분석의 가장 큰 매력은 신호 속에 숨어 있는 '특징(Feature)' 을 찾아내는 능
력입니다. 앞서 설명한 내적(Inner Product) 의 원리에 따라, 우리가 사용하는 웨이블
릿(탐지 도구)의 모양이 신호 속에 숨겨진 패턴과 닮아 있을수록, 그 특징은 더욱 선명하
게 드러납니다.

2. 컴퓨터를 위한 타협: 이산화 (Discretization)

하지만 이론적으로 완벽한 '연속' 웨이블릿 변환(CWT)을 컴퓨터로 계산하기 위해서는, 
연속적인 시간을 뚝뚝 끊어서 숫자로 만드는 이산화(Discretization) 과정이 필수적입
니다.
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이때 가장 대중적이고 빠른 방법은 이진 이산화(Dyadic Discretization) 입니다. 이는 
스케일(a)과 위치(b)를 2의 거듭제곱(2^j) 단위로 듬성듬성 나누는 방식인데, Mallat 
알고리즘과 같은 고속 연산이 가능하여 계산 시간을 획기적으로 줄여줍니다. 이를 보통 
이산 웨이블릿 변환(DWT) 이라고 부릅니다.

3. 빠르지만 놓치는 것들: DWT의 한계

하지만 이 논문에서는 빠른 길(DWT) 대신, 조금 느리더라도 꼼꼼한 길(CWT)을 택했습
니다. 그 이유는 특징 추출(Feature Extraction) 관점에서 DWT가 가진 치명적인 세 
가지 단점 때문입니다.

첫째, 직교성(Orthogonality)의 제약:

DWT를 쓰려면 웨이블릿이 서로 직교(orthogonal)해야 한다는 까다로운 수학적 조
건이 붙습니다. 이 조건을 맞추다 보면, 정작 우리가 찾고자 하는 신호의 특징과 '모
양'이 딱 맞는 적절한 웨이블릿을 찾기가 매우 어려워집니다. (선형대수학에서 기저 
벡터를 고를 때 직교성만 고집하다가 표현력을 잃는 것과 비슷합니다.)

둘째, 성긴 격자(Sparse Grids):
시간과 스케일을 2배수로 듬성듬성 건너뛰며 분석하다 보니, 그 '사이사이' 에 존재
하는 미세한 특징들을 놓칠 위험이 큽니다. 마치 그물이 너무 넓어서 작은 물고기(중
요한 신호)가 빠져나가는 것과 같습니다.

셋째, 시간 불변성(Time Invariance)의 부재:
특징 탐지에서 가장 중요한 것은 신호가 조금 옆으로 이동해도 결과가 일정해야 한다
는 것(Time Invariance)입니다. 하지만 DWT는 신호 시작점이 아주 조금만 달라져
도 분석 결과가 완전히 달라질 수 있습니다. 이는 패턴 인식에 있어 치명적인 약점입
니다.

⇒결론: 그래서 우리는 CWT를 씁니다.
이러한 이유로, 본 연구에서는 계산 비용이 조금 더 들더라도 연속 웨이블릿 변환(CWT) 
을 채택했습니다. 이는 앞서 소개한 Morlet 웨이블릿과 결합하여, 경제 데이터 속에 숨
겨진 미세한 동조화 흐름을 놓치지 않고 포착하기 위한 최선의 선택이었습니다.

—>이론적인 CWT임. 왜냐? 어차피 data를 컴퓨터에 저장하기 위해서는 이산적으로 저
장해야되기 때문. 즉, 지금 말하는건 아주 촘촘한 계단을 만드는거와 다름없음

WAVELET 변형
”FEATURE EXTRACTION BASED ON…….”논문에서는 wavelet을 변형

(허수부를 삭제하고 cos를 붙여서 사용 ⇒ 즉, 모양(크기)만을 분석합니다.) 
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﻿  범위에서 ﻿, 즉, ﻿가 클 수록 ﻿는 뾰족해짐.

상수 *cos그래프 

컸던 지수는 b가 커짐에 따라 점점 작아짐. 즉, exp는 0으로 수렴하게된다.

ψ(t) = exp −β t /2 cos(πt).( 2 2 )

exp −t <( 2) 0범위에서β2

exp −t <( 2) 0 β2 β ψ(t)
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thinking

💡 THINKING
﻿에서 

a:scale factor가 크다의 의미 
 ⇒exp부분은 감소, cos는 주기가 늦게 돈다.
 ⇒즉, 길고 낮은 파형

반대로 a가 작다의 의미
 ⇒exp 부분 증가, cos 주기 짧음.
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