
kafa46@hongik.ac.kr

노기섭 교수

(kafa46@hongik.ac.kr)

웹서버만들기

mailto:kafa46@hongik.ac.kr

2 / 17

■ Flask 소개

- 특징

- 설치

■ Hello world 서버 만들기

- 웹 애플리케이션 코딩 및 실행

- 라우팅 추가

- MTV 모델 적용

학습 목표

3 / 17

Flask 소개

4 / 17

■ Flask

- 플라스크는 파이썬으로 작성된 경량 웹 프레임워크

- 간결하고 유연한 웹 애플리케이션 개발을 가능

- Flask는 2010년 아르민 론허(Armin Ronacher)가 개발한 마이크로 프레임워크로 시작

- 이후 오픈 소스 프로젝트로 발전하여 많은 개발자들 사이에서 인기를 얻음

Flask 소개

https://en.wikipedia.org/wiki/Flask_(web_framework)
https://en.wikipedia.org/wiki/Flask_(web_framework)
https://en.wikipedia.org/wiki/Armin_Ronacher
https://en.wikipedia.org/wiki/Armin_Ronacher

5 / 17

■ 간결함과 유연성

- 최소한의 핵심 기능만 포함

- 개발자가 필요에 따라 기능을 선택적으로 추가

■ 단순한 애플리케이션 구조

- 하나의 파이썬 파일로 작성 가능

- @app.route 데코레이터를 사용하여 편리하게 경로 관리 가능

■ 강력한 확장 기능

- 확장 기능을 통해 강력한 기능 구현 가능

 데이터베이스 연동, 폼 처리, 사용자 인증, RESTful API 구축 등 다양한 기능 구축

→ 유연성과 신속한 구현 가능

■ 커뮤니티와 지원

- 활발한 커뮤니티와 풍부한 문서 제공

- 다양한 튜토리얼, 예제코드

- Stack Overflow와 같은 개발자 커뮤니티에서 질문과 답변을 쉽게 찾을 수 있음

Flask 특징

https://stackoverflow.com/questions/59971641/using-flask-sqlalchemy-models-with-a-regular-sqlalchemy
https://stackoverflow.com/questions/59971641/using-flask-sqlalchemy-models-with-a-regular-sqlalchemy

6 / 17

■ 가상환경 설치

python -m venv myenv

■ 가상환경 활성화

- Windows

myenv\Scripts\activate

- macOS 및 Linux

source myenv/bin/activate

■ Flask 설치

pip install Flask

Flask 설치

7 / 17

Hello world 서버 만들기

8 / 17

- Flask 클래스: Flask 애플리케이션의 인스턴스를 생성

- @app.route('/'): 특정 URL 경로에 대한 요청을 처리하는 뷰 함수 정의

- def home(): 요청을 처리하는 함수

 ‘/’ 경로로 요청이 들어오면 “Hello, World!”를 반환

- app.run(debug=True): 애플리케이션을 실행

 debug=True는 디버그 모드를 활성화

프로젝트 폴더를 생성 → app.py 코딩

from flask import Flask

app = Flask(__name__)

@app.route('/')

def home():

return "Hello, World!"

if __name__ == "__main__":

app.run(debug=True)

터미널에서 다음 명령어 실행

python app.py

로컬 호스트(127.0.0.1:5000)로 접속

9 / 17

■ Flask 서버

- 간단한 웹 애플리케이션 개발을 위한 훌륭한 도구이며

- Flask에는 개발을 쉽게 할 수 있도록 기본적으로 제공되는 내장 개발 서버 제공

 내장 개발 서버를 사용하면 빠르게 시작할 수 있음

- 내장 서버의 성능과 보안상의 한계 존재

 uWSGI 또는 Gunicorn 같은 고성능 WSGI (Web Server Gateway Interface)

서버를 사용해야 함

■ WSGI 서버 운용

- 추가로 많은 부분들을 학습해야 함

- 윈도우 시스템에서는 잘 작동되지 않는 경우가 많음

- 우리는 Flask에 내장된 서버를 이용하여 실습을 진행

여기서 잠깐!

10 / 17

라우팅 추가

from flask import Flask

app = Flask(__name__)

@app.route('/')

def home():

return "Hello, World!"

라우팅 추가

@app.route('/about_me')

def about_me():

return "안녕하세요. 저는 웹 개발자입니다. Flask를 사용하여 웹 애플

리케이션을 개발하고 있습니다."

if __name__ == "__main__":

app.run(debug=True)

터미널에서 다음 명령어 실행

python app.py

로컬 호스트(127.0.0.1:5000)로 접속

11 / 17

■ MTV 패턴

- Model: 데이터베이스 관련 로직

- Template: HTML 파일 생성 및 서비스 로직

- View: 서버 라우팅 및 비즈니스 로직

- 웹 애플리케이션에 따라 각자 개별 패턴을 가지고 있음

 Java를 사용하는 스프링부트의 경우 “Model-View-Controller (MVC)” 패턴을 사용

■ Model

- 데이터베이스와 상호작용하는 부분

- 데이터베이스의 구조와 데이터를 정의

- Flask에서는 SQLAlchemy를 사용하여 모델을 정의 (객체지향 구현)

- SQLAlchemy

 Python 언어용 SQL 도구이자 Object-Relational Mapping(ORM) 라이브러리

 관계형 데이터베이스와의 상호작용을 단순화

 데이터베이스 작업을 더 효율적이고 직관적으로 만들 수 있음

MTV 패턴 적용

12 / 17

■ SQLAlchemy를 설치: pip install Flask-SQLAlchemy

■ SQLAlchemy 이용하여 모델 정의

SQLAlchemy 모델 정의

from flask import Flask

from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///site.db'

db = SQLAlchemy(app)

class User(db.Model):

id = db.Column(db.Integer, primary_key=True)

username = db.Column(db.String(80), unique=True, nullable=False)

email = db.Column(db.String(120), unique=True, nullable=False)

def __repr__(self):

return f'<User {self.username}>'

if __name__ == "__main__":

app.run(debug=True)

13 / 17

템플릿(HTML) 코딩

<!-- templates/index.html -->

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>Home</title>

</head>

<body>

<h1>Hello, {{ name }}!</h1>

</body>

</html>

14 / 17

View (서버 라우팅) 코딩

from flask import Flask

app = Flask(__name__)

from flask import render_template

@app.route('/')

def home():

return render_template('index.html', name='World')

if __name__ == "__main__":

app.run(debug=True)

15 / 17

MTV 전체 코드

from flask import Flask, render_template

from flask_sqlalchemy import SQLAlchemy

import os

app = Flask(__name__) # 플라스크 객체 생성

데이터베이스 파일 경로 설정

BASE_DIR = os.path.abspath(os.path.dirname(__file__)) # 현재 경로 추출

DB_PATH = os.path.join(BASE_DIR, 'hello.db')

app.config['SQLALCHEMY_DATABASE_URI'] = f'sqlite:///{DB_PATH}'

app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False

데이터베이스 객체 생성

db = SQLAlchemy(app)

class User(db.Model):

id = db.Column(db.Integer, primary_key=True)

username = db.Column(db.String(80), unique=True, nullable=False)

email = db.Column(db.String(120), unique=True, nullable=False)

def __repr__(self):

return f'<User {self.username}>'
def home():

return render_template(
'index.html', name='World'

)

if __name__ == "__main__":
with app.app_context():

db.create_all()
app.run(debug=True)

16 / 17

■ SQLite 데이터베이스 파일은 VS Code 확장 팩(Extension Pack) 중에서

SQLite3 Editor를 설치하면 편리하게 DB 내용을 확인하고 수정 가능

데이터베이스 확인용 익스텐션

17 / 17

■ 지금까지 작성한 코드를 기반으로

■ MTV 패턴 확장하는 실습

다음 시간에는…

수고하셨습니다 ..^^..

	슬라이드 1: 웹 서버 만들기
	슬라이드 2: 학습 목표
	슬라이드 3: Flask 소개
	슬라이드 4: Flask 소개
	슬라이드 5: Flask 특징
	슬라이드 6: Flask 설치
	슬라이드 7: Hello world 서버 만들기
	슬라이드 8: 프로젝트 폴더를 생성  app.py 코딩
	슬라이드 9: 여기서 잠깐!
	슬라이드 10: 라우팅 추가
	슬라이드 11: MTV 패턴 적용
	슬라이드 12: SQLAlchemy 모델 정의
	슬라이드 13: 템플릿(HTML) 코딩
	슬라이드 14: View (서버 라우팅) 코딩
	슬라이드 15: MTV 전체 코드
	슬라이드 16: 데이터베이스 확인용 익스텐션
	슬라이드 17: 다음 시간에는…
	슬라이드 18

