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Key Concepts of k-Nearest Neighbors
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Idea of Nearest Neighbor

B k-Nearest Neighbor (k-NN)
- A type of supervised learning algorithm
- Classifies new data by comparing it with existing data based on similarity
B 1-Nearest Neighbor (k=1)
- What is the most similar data point to the new input?
— Classity it with the same label as the nearest data point

- The value of k indicates how many nearest neighbors to consider for classification
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Key Concepts of k-Nearest Neighbors

B Predict which class the new data point will belong to depending on value of k
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3-Nearest Neighbors

B 3-Nearest Neighbors (k =3)

- When k =3, how do we determine the label of the new data point?

- The label is determined by majority voting among the labels of the 3 nearest neighbors
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Distance Metrics
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Distance Metrics

B How do we measure closeness between data points in a table?
— Distance metrics

B In instance-based learning, prediction is made after a new data point arrives

B Explore Euclidean and Manhattan distances using the data
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Euclidean Distance

B The most commonly used distance
— The straight-line distance (distance between two points)

B Itis calculated as the square root of the sum of squared differences between

feature values
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Manhattan Distance

Bl Not commonly used in daily life, but frequently applied in machine learning

and programming

B Like navigating in a grid-like city (e.g., Manhattan in New York), movement

follows the axis-aligned paths
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Classification with k-Nearest Neighbors



Steps in k-NN Operation (1/2)

H Goal

- To predict the label of new data through a 3-step process

B Step 1. Distance Calculation
- Compute the distance between the new data and all training samples

- Typically use Euclidean distance (default)

XHEE(y,)

B Step 2. Find the Nearest Neighbors ? | 2y

- Select the k closest data points (e.g., k = 3)
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Steps in k-NN Operation (2/2)

B Step 3. Make Prediction

- Predict the class label of the new data point based on majority voting among the k nearest

neighbors

- Choose the class that appears most frequently among the selected neighbors
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Example: k-NN Classification (1/3)

B We are given genetic data of students and whether they were confirmed
COVID-19 cases
B Let's predict whether a new student is COVID-positive using k-NN

(e.g., k=1or k=23)
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Example: k-NN Classification (2/3)

B Compute the distance between the new student and students A to F using

genetic information

Bl Determine the COVID-19 status of the new student based on the label of the
nearest neighbor (k=1)
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Example: k-NN Classification (3/3)

Bl Determine the COVID-19 status of the new student by using the labels of the 3

nearest neighbors (k = 3)
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Regression with k-Nearest Neighbors



k-NN Algorithm for Regression

B If the target variable yy is continuous (not categorical), we apply regression
B The algorithm works similarly to classification

— Predict the value as the average of the k nearest neighbors’ values

Bl Optionally, you can weight neighbors inversely proportional to distance
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Example: k-NN Regression (1/2)

B We are given students' final subject scores and their final admission scores for

an Al program

B Let’s predict the admission score for a new student using k-NN

(e.g., k=1o0rk=3)
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Example: k-NN Regression (2/2)
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Pros & Cons

B Strengths of k-Nearest Neighbors
- Robust to outliers
- Can consider data distribution

- Effective with large datasets

B Limitations of k-Nearest Neighbors
- Difficulty in selecting the optimal k
- Must choose the right distance metric

- Higher computational cost (especially with large datasets)
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Hyperparameters of k-Nearest Neighbors
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Hyperparameters in k-Nearest Neighbors (1/2)

B What is a Hyperparameter?
- A parameter set manually by the user, not learned through training

- Proper tuning of hyperparameters can significantly impact model performance

B Roleof k

- k refers to the number of nearest neighbors

- Choosing the right k is critical for performance

B Issues with Choosing k
- Small k
- May overfit to local noise
- High variance, prone to outliers
- Large k
- May include distant/irrelevant neighbors

- Risk of underfitting and class confusion

23 / 29




Hyperparameters in k-Nearest Neighbors (2/2)

B How to Find the Best k

- Change the value of k and evaluate model performance

- Choose the k that yields the best validation result
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Implementing k-Nearest Neighbors
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kNN Practice

B GitHub repository and is linked to the textbook content

- Implementing k-NN using scikit-learn library from Textbook

- https://github.com/KMA-AlData/ML/tree/main/CH07

- Implementing by Professor

+ Use codes provided by Prof.
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