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B Data for Logistic Regression

B Logistic Regression Model
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Study Goals

B Represent input data in a feature space

B Classify discrete actual values using decision boundaries

B Understand the sigmoid function and learn classification methods

B Loss function used in logistic regression

B Apply gradient descent to minimize it.
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Data for Logistic Regression



Concept of Binary Classification

Bl Classification

The task of predicting the class/category to which an object belongs,

based on a set of features.

An observed object is described by a set of shared features.

The training data for a classification problem is given:

D = {(x;,y: )}y

yi =1{C1,Cy, -, Cx}

Each data point consists of:
- Input feature vector

* Discrete label: y; (from a set of k possible class labels)

If only two classes exist, we typically assume:

- The labels y; represent binary outcomes (e.g., 1 for positive, 0 for
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Binary Classification

B A classification problem where an object represented by a feature vector

belongs to one of two classes.

B Typically expressed as D = { (x;,y; )}\.,, where y; € {0, 1}.
[Example]
- If we classity emails into spam and non-spam,

- we assign 1 for spam and 0 otherwise.

B The data consists of collections of observations with specific feature values.
[Example]
- If a student is majoring in Al and has a GPA of 3.8, you can represent this as:
- Major (categorical): Al
* GPA (numerical): 3.8

b / Ly




Binary Classification - Example

B Categorical information must be converted

into numerical values for machine learning.

[Example]

- Category Map
- Al=1
* Mechanical Engineering = 2
- Math =3

- Physics =4,

- GPAis 3.8

= Feature vector might look like [ 1, 3.8 ]"
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Feature Vector

B Students currently enrolled using their major and GPA,

B Each student can be represented as a feature vector with two attributes.
- When all objects are described using the same features,
each individual observation is expressed in vector form.

- This vector is called a feature vector

[Example]
- Student 1: majoring in Artificial Intelligence with a GPA of 3.8
=>» feature vector [ 1, 3.8 ]T

- Student 2: majoring in Mathematics with a GPA of 4.0

=>» feature vector [ 3, 4.0 ]T
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Feature Space

B Feature Space

- When using feature vectors, each observation can be represented as a point in a space

where
[Example]
- We represent a student's activity and performance

=> [1,3.8] Tand [3, 4.0]T (Two feature vectors can be plotted in a 2D feature space)

 Feature vector has d components
« Each observation can be represented
as a point in a d-dimensional space.

=>» This space is called the feature space.
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Classification in Feature Space

B Feature vectors of 3 students majoring in Al

x; = [122]7, x, =[138]7, x3 =1][139]

B Feature vectors of 3 students majoring in Mathematics

x, = [322]T, x, =[340]T, x; =[333]T

B Suppose after surveying 6 students,

we find that all AI majors took the course and all Math majors did not.

D = {(x;,y)}t=1
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Visualization of feature space

B Students in Number Theory course = Blue dots
B Those who have not taken the course = dots.

B Decision Boundary 1 or 2

- Separate students who took the Number Theory or not

Boundary1 Boundary 2

T8

GPA

|
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as a 4 Major
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Binary Classification Using a Linear Discriminant Function

B Discriminant Function

- A function that assigns a discrete predicted value to a feature vector given as input

B Linear Discriminant Function

gx) =w'x
parameter vector W = [wy, wq, -+, wy]?

Feature vector X =[x, %q,,,xq]

Bl Once the discriminant function g(x) is determined,
the sign of g(x) for a given feature vector x is used

to determine the discrete predicted value.
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Visual understanding
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Linear Discriminant Function and Classification

In machine learning models used for classification, the feature space is

divided in a way that supports accurate classification.

When the feature space is 1-dimensional, it is divided by a point.

When the feature space is 2-dimensional, it is divided by a line.

When the feature space is 3-dimensional, it is divided by a plane.

When the feature space has 4 or more dimensions, it is divided by a hyperplane.
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Example: Students taking the Number Theory course

B Example: Students taking the Number Theory course

- Features: department and GPA Boundary 1
- Let the feature vector be x = [x{, x5]T, where A ' " @
x1: department \ ;E
- |
Xy GPA GPA
@ o
- If we define the decision boundary using =
g(x) =20x; +3x,—36=0 . \
w=[-36 20 3" \
o i Il » a 4
- If weevaluate x, = [1 3.8]"7 and x, =[3 2.2]7 Major

: =20 - .38-36>0 : e
9(xz) =20-1+3 > This allows us to distinguish students

- g(x))=20-34+3-22-36<0 who took the course from those who did
not using the sign of g(x)
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Summary on Decision Boundary

If g(x) = 0 defines the decision boundary,
- the sign of g(x) determines whether a student is
- Course taker
or
- Non-taker

by dividing the feature space accordingly.

Phase Description

Training When a feature vector consists of d components, the training data D = {(x;, ;) }* s

used to determine the parameters w = {wm-wh s wd] of the linear discriminant function

9(x;) =w x;.

Prediction When new input data X is given, if g(x') > 0, assign the predicted class label as 1;

(Inference) otherwise, assign 0.
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More Practical Example
on Logistic Regression Data
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Binary Classification Using Posterior Probability

B Members and non-members of a gymnastics club at university A

- Students who are members of the “gymnastics” club

- or Not

B We recorded their body weights and obtained the distribution in histogram

S0l &8 SFAH UIE

Distribution of body weights of students
who are members and non-members of
the gymnastics club

4005t 4146
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(Example) Data for Logistic Regression

B How can we determine whether a student weighing 52 kg is a member of the

gymnastics club?
- Let’s assume
-y =1 for members of the gymnastics club

-y =0 for non-members

B Let the observed value (evidence) be that the student weighs 52 kg
- Calculate P(y=1|x)and P(y =0 x)
-IfP(y=11x)>P(y=01x)
- the student is a member of the gymnastics club

- otherwise, they are not.
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Bayes’ Theorem

Conditional Probability

& 2SS 0|8 o7|M P(4, B)= P(4 N B)2t 22 2
0|C}. Z24F &E2] Zol0]| 2t P(4, B) = P(B|A)P(A)HE & = UL

4
P(B|4)= %‘?: ARZ4 A7} 0O[0| ASSHE I Al B7} AlE
2 O

)
Bayes’ Theorem
A 4, -+, A2} FOVRE 1 QUojo] F AR 4,94 A0 LhEI04 P(4,, 4)=00RID BIX}

P(4,,B) _P(B| 4)P(4,) _ P(B|4)P(4)

P(A, | B) =
&t P(B)

S P(4.8) 3 P(B|4)P(4)

-l .'-1

Simple Version

pealp) < PBID P

P(B)
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(Example) Data for Logistic Regression

According to Bayes’ theorem:

Pa|y=1)-Ply=1) _ P |y=1)-Ply=1)
P(a) Pl@ly=1)-Ply=1)+Pl|y=0)-Ply=0)

Ply=1|z)=

To compare the posterior probabilities, we need the values of

Ply=1),Ply=0), Plx|y=1) and P(x | y =0).

At= 2HE (Posterior probability)2 ZHE =&

P(y = 1|lx)= x5 220 = W(Z2 x7t NS M)

rot
rot
N

y=10| YUY YEE +X2 B
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Logistic Regression Model



Sigmoid Function

B Properties of the Sigmoid Function

- Denoted as d(2)

- Maps any real-valued number into a value between 0 and 1

- Differentiable for any input

) 1 e*
og(x) = =
14+e™ 1+e*
d
— v
dza(x) 2
1

Let, —

Y 1+e*

y=(1+e*)1

Differentiate

dy —x\—2 d —Xx
v 1-(1+e7%) -dx(1+e )
i(1 +e™¥)=—e*
dx
S0, dy e

dx (14 e™%)2

Therefore,
d e * 1 e*
dx (14+e*)?2 14+e* 1+e*

=o(x)—(1-0x))
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Usage of Sigmoid Function

B Application 1
- Represent the probability of a certain event occurring
- Since the sigmoid function outputs values between 0 and 1,

it can be used to represent the probability of a binary outcome based on

the value of the input variable(as in logistic regression)

B Application 2
- Activation function in the computation process
of artificial neural networks

- Both the sigmoid function and its derivative

are important and widely used. O
4 2 0 . 4

Sigmoid Function
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Concept of Logistic Function

B Concept of Logistic Regression

- A model used to solve classification problems by predicting the probability of an event

occurring.

B Expression of Event Probability
- Probability
- “The chance of the Korean team to the semi-finals is less than 1 in 5.”

- Odds: The ratio of the probability that an event will occur to the probability that it will not

occur

Odds = 1L where p is the probability of the event occurring

- Log-odds: The logarithm of the odds

p
1 =]
ogodds nl—p
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The Shape of log odds

I_“: i Jll 10.0
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Binary Classification

B A situation where all objects belong to one of two classes

(Example)
- Whether the Korean national soccer team advances to the semi-finals
- Binary labels can be represented as:
~y=1lory=20
- If we can calculate the posterior probability,
* we can compare P(y=1|x)and P(y =01 x ) for classification

- If P(y=11x)>0.5, then the predicted value for input xis 1

B The log-odds of the probability

- Object with feature vector x has the binary label 1

P(y = 1]x)

|
TPy =10

= Wy + WX
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Log odds in Logistic Regression

B In logistic regression,
the log-odds are expressed as a linear function.

P(y = 1|x)

ln1 PG = 1% =Wy + Wix; + Woxy, + o+ wyxg = WX

Weight Params: W = [wg, Wy, -+, wq]!

Step-by-step derivation from log-odds to the sigmoid function

(commonly used in logistic regression)

Let z=wTx

P(y = 1|x) ::> b _
In =w'x Also, let In = Z
1-Py=1 , 1-—
=i p=Py=10x) P

Go to next slide
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Step-by-step derivation from Log-odds to Sigmoid

p
1-p

In =Z

Exponentiate both side

Multiply both sidesby 1 —p

p=e“(1—p)
Distribute
p=e’—e’p

Bring p terms together

p+e’p =e”

Factor p
p(1+e?) =e”

Divide both sidesby 1 + ¢~

eZ

:1+ez

Exactly same form
of Sigmoid Function!

p

Divide both the numerator
and the denominator by x

1 1
p= = — T
e_lz+1 1+e 2 14w
Therefore,
T
P(y =1|x) = exp(w_x) =owlx) =0d(2)

1+ exp(wTx)
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Likelihood



Expression of Likelihood

Training Dataset:

D = {(x;, y; )}, Maximum Likelihood Estimation (MLE)
Find parameters wy, wy

Expression of Posterior Probability: that maximize the likelihood.
P(y = 1|x;) = o(wg + wyX;)

For given training data, the parameters w,, w; determine the classification result:
. 1-y;
P(yilx;) = o(wy + W1xi)y‘(1 —o(wp + Wlxi)) l

Interpretation

p(yilx;) =

o(wy + wyx;), ify; =1
1—o(wg+wyx) ify;=0

Exactly same to the Bernoulli Distribution (Probability Mass Function)
f(k;p) = p*(1 — p)~* for possible outcome k € {0, 1} and
given probability p = a(wy + wyx;)
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Likelihood of training dataset D

Simple case
Yi = Wo + WX
N

N
| [Poito = | [towo +wix?id = awg +wyxpt=0)]
i=1

i=1

General case

Yi = Wo + WiXj1 +WoXip + -+ WgXig
N

N
[ [Poitxo =] lo0w +wrxia + - + waria)?i (1 = awo + wixis + -+ wyxe)' 0]
=N i=1
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Interpretation of Likelihood

Ifyl =1

P(yi = 1lx;) = a(wp + wix;)) 7 P(y;|x;): conditional

Ify; =0 " probability, based on the
P(i=0lx) =1-0(wo+wix)~  model parameters (wy, w;)
Likelihood function L(-) is the product of @

all P(y;lx;)
The higher L(-) is preferred!! Input x; belongs to

the correct class for

In practice, the negative log-likelihood _ ,
_ _ the i-th observation
—1In L(-) is used for ease of computation

In this case, smaller value is preferred!!
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Learning Objective & NLL

Learning Objective

Find the parameter vector w that maximizes classification

performance on the given training data D.

Negative Log Likelihood (NLL)

« Negative value of the log of the likelihood function

« Used to define the loss function L(-)

N
1
Lw) = =% ) InP(yilx:)
=1

N:the number of samples in dataset D
w:parameter vector
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Learning Apporach

The posterior probability P(y; = 1|x;) is determined by

the feature vector x; and parameters w.

Therefore, our goal is to find parameter 1%
. w* =argmaxL(w) = —z P(yilx;)
w that the likelihood L(w). w N &

(Exactly same meaning)

In other words, our goal is to find w* = arg mix L(w)
%%

parameter w that the NLL .
: A 1
(Negative Log Likelihood —In L(w)). = _Nzln P(y;|x;)
i=1
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Binary Cross Entropy (BCE)

NLL (Negative Log Likelihood) and BCE (Binary Cross Entropy)

Commonly used loss functions in binary classification,
In binary classification with a

sigmoid output, BCE and NLL

especially in logistic regression and neural networks.

Definition of BCE
are mathematically equivalent

N
1
BCE = —Nz{yi logy; + (1 —y;) -log(1 —9;)}
i=1

BCE loss wheny ==1 BCE loss when y == 0
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Learning with Gradient Descent

Loss Function

Negative Log Likelihood (NLL) Loss

Procedure

1) Initialization: Randomly Initializate Parameters
2) Feed Input —

3) Compute NLL Loss __ Repeat until reaching to the end condition

3) Update Parameters —

37 / Ly




Feed-forward

Feed input

to Model ﬂ

Xi

1
NLL = L(W) = —NzlnP(ffilXi)

aL(w)

)7i=Wo+zWixi=Wo+WiT‘xi

i=1

Repeat until the
terminaltion condition

is satisfied

P

Yi
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Derivative of Loss Function (1/3)

BCE = NLL = L(W)

N
__ %;{yi “0(z) + (1~ ) - log(1 — 0(z))}

where z; = WTX;

N
1
= _Nz{yi -logd; + (1 —y) -log(1 —9;)}
i=1
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Derivative of Loss Function (2/3)

ot

st O] & (Chain Rule)

Ing= 02 xo()O|E x 2z 0|2

Q

azl

—Ino(z;) =

1
T )3

ot

Ing= Ol x U+ (1-2z)0lE x o()BlE x z; 0|2

ADZEO|=E0|Z HE

9 1 Zi
ow; no(z) = a(z;) ow;
2 o = 1 1 aZ‘
ow, no(l-—z)= sd—z) (-D-ox)—(1-0X))- W,
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Derivative of Loss Function (3/3)

N
dL(W 1 d
W) _ 3 23w i 0@ + (1 =) 1og(1 ~ a(z))]

N
O'(Zi)(l — a(zi)) 0z; O'(Zi)(l — a(zi)) 0z;
[yi ' o(z;) dw; 0= 1—-o0(z) Ow;

o 1 y O — L
L) 1w 1w
ow; =N, 1(3’1 U(Zl))— =—N 1(3’i —o(WTX))x;
1= =
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Terminaltion Condition

— Fix the number of updates.

Repeat until
Update the parameters until the desired

the terminaltion — R
performance is achieved.

condition is

satisfied — Update the parameters until the norm of the gradient
(partial derivative vector) falls below a threshold.
(If the parameter updates are below a meaningful

threshold, stop the optimization.)
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Learning Method Comparison

Small batches

Data Unit Entire dataset (e.g. 32, 64 samples)
Memory Usage High Moderate

Update Frequency Once per epoch Once per mini-batch
Convergence Speed Slow but stable Fast and efficient
Stability Very stable Relatively stable
Computational Lower High

Efficiency (due to large dataset) (GPU-friendly)

Small datasets

that fit in memory Standard deep learning

Best Use Case

Linear regression,

full batch training CNN, RNN training

Examples
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B We will explore real world problem

- Practice & Exercise!

- Have a fun!
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