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■ Data for Logistic Regression

■ Logistic Regression Model
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■ Represent input data in a feature space

■ Classify discrete actual values using decision boundaries

■ Understand the sigmoid function and learn classification methods

■ Loss function used in logistic regression 

■ Apply gradient descent to minimize it.

Study Goals
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Data for Logistic Regression
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■ Classification

- The task of predicting the class/category to which an object belongs, 

based on a set of features.

- An observed object is described by a set of shared features.

- The training data for a classification problem is given:

- Each data point consists of:

 Input feature vector

 Discrete label: 𝑦𝑖 ​  (from a set of 𝑘 possible class labels)

- If only two classes exist, we typically assume:

 The labels 𝑦𝑖 ​  represent binary outcomes (e.g., 1 for positive, 0 for negative)

Concept of Binary Classification

𝐷 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁

𝑦𝑖 = 𝐶1, 𝐶2, ⋯ , 𝐶𝐾



6 / 44

■ A classification problem where an object represented by a feature vector 

belongs to one of two classes.

■ Typically expressed as 𝐷 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁 , where 𝒚𝒊 ∈ {𝟎, 𝟏}.

[Example]

- If we classify emails into spam and non-spam, 

 we assign 1 for spam and 0 otherwise.

■ The data consists of collections of observations with specific feature values.

[Example]

- If a student is majoring in AI and has a GPA of 3.8, you can represent this as:

 Major (categorical): AI

 GPA (numerical): 3.8

Binary Classification
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■ Categorical information must be converted

into numerical values for machine learning.

[Example]

- Category Map

 AI = 1 

 Mechanical Engineering = 2 

 Math = 3 

 Physics = 4,

- GPA is 3.8

➔ Feature vector might look like 1, 3.8 𝑇

Binary Classification - Example
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■ Students currently enrolled using their major and GPA, 

■ Each student can be represented as a feature vector with two attributes.

- When all objects are described using the same features, 

each individual observation is expressed in vector form.

- This vector is called a feature vector

[Example]

- Student 1: majoring in Artificial Intelligence with a GPA of 3.8 

➔ feature vector [ 1,  3.8 ]T

- Student 2: majoring in Mathematics with a GPA of 4.0 

➔ feature vector [ 3,  4.0 ]T

Feature Vector
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■ Feature Space

- When using feature vectors, each observation can be represented as a point in a space 

where each dimension corresponds to one component of the feature vector.

[Example]

- We represent a student's activity and performance

➔ [1, 3.8] T and [3, 4.0]T (Two feature vectors can be plotted in a 2D feature space)

Feature Space

• Feature vector has 𝑑 components 

• Each observation can be represented 

as a point in a 𝑑-dimensional space.

➔ This space is called the feature space.
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■ Feature vectors of 3 students majoring in AI

𝑥1 = 1 2.2 𝑇 , 𝑥2 = 1 3.8 𝑇 , 𝑥3 = 1 3.9 𝑇

■ Feature vectors of 3 students majoring in Mathematics

𝑥1 = 3 2.2 𝑇 , 𝑥2 = 3 4.0 𝑇 , 𝑥3 = 3 3.3 𝑇

■ Suppose after surveying 6 students, 

we find that all AI majors took the course and all Math majors did not.

Classification in Feature Space

𝐷 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
6
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■ Students in Number Theory course ➔ Blue dots

■ Those who have not taken the course ➔ Red dots.

■ Decision Boundary 1 or 2 

- Separate students who took the Number Theory or not

Visualization of feature space

Major

GPA

Boundary 1 Boundary 2
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■ Discriminant Function

- A function that assigns a discrete predicted value to a feature vector given as input

■ Linear Discriminant Function

■ Once the discriminant function g(x) is determined,

the sign of g(x) for a given feature vector x is used 

to determine the discrete predicted value.

Binary Classification Using a Linear Discriminant Function

𝑔 𝑋 = 𝑊𝑇𝑋

𝑊 = 𝑤0, 𝑤1, ⋯ , 𝑤𝑑
𝑇

𝑋 = 𝑥0, 𝑥1, , ⋯ , 𝑥𝑑

parameter vector

Feature vector
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Visual understanding

𝑥0

𝑥1

𝑥𝑑

⋮

𝑦

𝑤0

𝑤1

𝑤𝑑

⋮𝑥 = 𝑥0, 𝑥1, , ⋯ , 𝑥𝑑

𝑤 = 𝑤0, 𝑤1, ⋯ , 𝑤𝑑
𝑇
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■ In machine learning models used for classification, the feature space is 

divided in a way that supports accurate classification.

- When the feature space is 1-dimensional, it is divided by a point.

- When the feature space is 2-dimensional, it is divided by a line.

- When the feature space is 3-dimensional, it is divided by a plane.

- When the feature space has 4 or more dimensions, it is divided by a hyperplane.

Linear Discriminant Function and Classification

1 개의 성분으로 특징 벡터가 구성될 때 이진 분류

2 개의 성분으로 특징 벡터가 구성될 때 이진 분류
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■ Example: Students taking the Number Theory course

- Features: department and GPA

- Let the feature vector be 𝑥 = 𝑥1, 𝑥2
𝑇, where

𝑥1: department

𝑥2: GPA

- If we define the decision boundary using

𝑔 𝑥 = 20𝑥1 + 3𝑥2 − 36 = 0

𝑤 = −36 20 3 𝑇

- If we evaluate 𝑥2 = 1 3.8 𝑇 and  𝑥4 = 3 2.2 𝑇

 𝑔 𝑥2 = 20 ⋅ 1 + 3 ⋅ 3.8 − 36 > 0

 𝑔 𝑥4 = 20 ⋅ 3 + 3 ⋅ 2.2 − 36 < 0

Example: Students taking the Number Theory course

This allows us to distinguish students 
who took the course from those who did 
not using the sign of 𝑔(𝑥)

Major

GPA

Boundary 1
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If 𝒈 𝒙 = 𝟎 defines the decision boundary, 

- the sign of 𝒈 𝒙 determines whether a student is 

 Course taker 

or 

 Non-taker

by dividing the feature space accordingly.

Summary on Decision Boundary



17 / 44

More Practical Example 
on Logistic Regression Data
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■ Members and non-members of a gymnastics club at university A

- Students who are members of the “gymnastics” club

- or Not

■ We recorded their body weights and obtained the distribution in histogram

Binary Classification Using Posterior Probability

Distribution of body weights of students 
who are members and non-members of 
the gymnastics club
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■ How can we determine whether a student weighing 52 kg is a member of the 

gymnastics club?

- Let’s assume

 y = 1 for members of the gymnastics club

 y = 0 for non-members

■ Let the observed value (evidence) be that the student weighs 52 kg

- Calculate P( y = 1 ∣ x) and P( y = 0 ∣ x)

- If P( y = 1 ∣ x ) > P( y = 0 ∣ x )

 the student is a member of the gymnastics club

 otherwise, they are not.

(Example) Data for Logistic Regression



20 / 44

Bayes’ Theorem

Conditional Probability

𝐵𝑎𝑦𝑒𝑠’ 𝑇ℎ𝑒𝑜𝑟𝑒𝑚

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 ⋅ 𝑃(𝐴)

𝑃(𝐵)

Simple Version
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(Example) Data for Logistic Regression

사후 확률(Posterior probability)은 조건부 확률

𝑃 𝑦 = 1|𝑥 는 𝑥를 관찰하였을 때(혹은 𝑥가 주어졌을 때) 

𝑦 = 1이 성립할 정도를 수치로 표현한 값
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Logistic Regression Model
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■ Properties of the Sigmoid Function

- Denoted as 𝜎(𝑧)

- Maps any real-valued number into a value between 0 and 1

- Differentiable for any input

Sigmoid Function

𝜎 𝑥 =
1

1 + 𝑒−𝑥
=

𝑒𝑥

1 + 𝑒𝑥

𝑑

𝑑𝑧
𝜎 𝑥 ??

𝑦 =
1

1 + 𝑒−𝑥

𝑦 = 1 + 𝑒−𝑥 −1

Differentiate

𝑑𝑦

𝑑𝑥
= −1 ⋅ 1 + 𝑒−𝑥 −2 ⋅

𝑑

𝑑𝑥
(1 + 𝑒−𝑥)

𝑑

𝑑𝑥
1 + 𝑒−𝑥 = −𝑒−𝑥

So, 𝑑𝑦

𝑑𝑥
=

𝑒−𝑥

1 + 𝑒−𝑥 2

Therefore,

𝑑

𝑑𝑥
𝜎 𝑥 =

𝑒−𝑥

1 + 𝑒−𝑥 2 =
1

1 + 𝑒−𝑥 ⋅
𝑒𝑥

1 + 𝑒𝑥

Let,

= 𝜎 𝑥 − (1 − 𝜎 𝑥 )
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■ Application  1

- Represent the probability of a certain event occurring

- Since the sigmoid function outputs values between 0 and 1, 

it can be used to represent the probability of a binary outcome based on 

the value of the input variable(as in logistic regression)

■ Application 2

- Activation function in the computation process 

of artificial neural networks

- Both the sigmoid function and its derivative 

are important and widely used.

Usage of Sigmoid Function

Sigmoid Function
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■ Concept of Logistic Regression

- A model used to solve classification problems by predicting the probability of an event 

occurring.

■ Expression of Event Probability

- Probability 

 “The chance of the Korean team to the semi-finals is less than 1 in 5.”

- Odds: The ratio of the probability that an event will occur to the probability that it will not 

occur

𝑂𝑑𝑑𝑠 =
𝑝

1 − 𝑝
, 𝑤ℎ𝑒𝑟𝑒 𝑝 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑜𝑐𝑐𝑢𝑟𝑟𝑖𝑛𝑔

- Log-odds: The logarithm of the odds

log 𝑜𝑑𝑑𝑠 = ln
𝑝

1 − 𝑝

Concept of Logistic Function
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The Shape of log odds
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■ A situation where all objects belong to one of two classes

(Example)

- Whether the Korean national soccer team advances to the semi-finals

- Binary labels can be represented as:

 𝑦 = 1 or 𝑦 = 0

- If we can calculate the posterior probability, 

 we can compare 𝑃( 𝑦 = 1 ∣ 𝑥 ) and 𝑃( 𝑦 = 0 ∣ 𝑥 ) for classification

 If 𝑃( 𝑦 = 1 ∣ 𝑥 ) > 0.5, then the predicted value for input 𝑥 is 1

■ The log-odds of the probability

- Object with feature vector 𝑥 has the binary label 1 

Binary Classification

ln
𝑃 𝑦 = 1 𝑥

1 − 𝑃(𝑦 = 1|𝑥)
= 𝑤0 + 𝑤1𝑥
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■ In logistic regression, 

the log-odds are expressed as a linear function.

Log odds in Logistic Regression

ln
𝑃 𝑦 = 1 𝑥

1 − 𝑃(𝑦 = 1|𝑥)
= 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑑𝑥𝑑 = 𝑊𝑇𝑋

𝑊𝑒𝑖𝑔ℎ𝑡 𝑃𝑎𝑟𝑎𝑚𝑠: 𝑊 = 𝑤0, 𝑤1, ⋯ , 𝑤𝑑
𝑇

Step-by-step derivation from log-odds to the sigmoid function 

(commonly used in logistic regression)

ln
𝑃 𝑦 = 1 𝑥

1 − 𝑃(𝑦 = 1|𝑥)
= 𝑤𝑇𝑥 ln

𝑝

1 − 𝑝
= 𝑧

𝐿𝑒𝑡 𝑧 = 𝑤𝑇𝑥

𝐴𝑙𝑠𝑜, 𝑙𝑒𝑡
𝑝 = 𝑃 𝑦 = 1 𝑥

Go to next slide
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Step-by-step derivation from Log-odds to Sigmoid

ln
𝑝

1 − 𝑝
= 𝑧

Exponentiate both side

𝑝

1 − 𝑝
= 𝑒𝑧

Multiply both sides by  1 − 𝑝

𝑝 = 𝑒𝑧(1 − 𝑝)

Distribute

𝑝 = 𝑒𝑧 − 𝑒𝑧𝑝

Bring 𝑝 terms together

𝑝 + 𝑒𝑧𝑝 = 𝑒𝑧

Factor 𝑝

𝑝(1 + 𝑒𝑧) = 𝑒𝑧

Divide both sides by 1 + 𝑒𝑧

𝑝 =
𝑒𝑧

1 + 𝑒𝑧 Exactly same form 
of Sigmoid Function!

Therefore,

𝑃 𝑦 = 1 𝑥 =
exp 𝑤𝑇𝑥

1 + exp(𝑤𝑇𝑥)
= 𝜎(𝑤𝑇𝑥) = 𝜎(𝑧)

Divide both the numerator 
and the denominator by x

𝑝 =
1

1
𝑒𝑧 + 1

=
1

1 + 𝑒−𝑧
=

1

1 + 𝑒−𝑤𝑇𝑥
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Likelihood
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Expression of Likelihood

Training Dataset: 

𝐷 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁

Expression of Posterior Probability: 

𝑃 𝑦 = 1 𝑥𝑖 = 𝜎(𝑤0 + 𝑤1𝑥𝑖)

For given training data, the parameters 𝑤0, 𝑤1 determine the classification result:

𝑃 𝑦𝑖 𝑥𝑖 = 𝜎 𝑤0 + 𝑤1𝑥𝑖
𝑦𝑖 1 − 𝜎 𝑤0 + 𝑤1𝑥𝑖

1−𝑦𝑖

Maximum Likelihood Estimation (MLE)

Find parameters 𝑤0, 𝑤1

that maximize the likelihood.

Exactly same to the Bernoulli Distribution  (Probability Mass Function) 

𝑓 𝑘; 𝑝 = 𝑝𝑘 1 − 𝑝 1−𝑘 for possible outcome 𝑘 ∈ {0, 1} and 

given probability 𝑝 = 𝜎 𝑤0 + 𝑤1𝑥𝑖

Interpretation

𝑝 𝑦𝑖 𝑥𝑖 = ቊ
𝜎 𝑤0 + 𝑤1𝑥𝑖 , 𝑖𝑓 𝑦𝑖 = 1

1 − 𝜎 𝑤0 + 𝑤1𝑥𝑖 𝑖𝑓 𝑦𝑖 = 0
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Likelihood of training dataset 𝐷

Simple case

ෑ

𝑖=1

𝑁

𝑃 𝑦𝑖 𝑥𝑖 = ෑ

𝑖=1

𝑁

𝜎 𝑤0 + 𝑤1𝑥𝑖
𝑦𝑖 1 − 𝜎 𝑤0 + 𝑤1𝑥𝑖

1−𝑦𝑖

𝑦𝑖 = 𝑤0 + 𝑤1𝑥𝑖

General case

𝑦𝑖 = 𝑤0 + 𝑤1𝑥𝑖1 + 𝑤2𝑥𝑖2 + ⋯ + 𝑤𝑑𝑥𝑖𝑑

ෑ

𝑖=1

𝑁

𝑃 𝑦𝑖 𝑥𝑖 = ෑ

𝑖=1

𝑁

𝜎 𝑤0 + 𝑤1𝑥𝑖1 + ⋯ + 𝑤𝑑𝑥𝑖𝑑
𝑦𝑖 1 − 𝜎 𝑤0 + 𝑤1𝑥𝑖1 + ⋯ + 𝑤𝑑𝑥𝑖𝑑

1−𝑦𝑖
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Interpretation of Likelihood

If 𝑦𝑖 = 1

𝑃 𝑦𝑖 = 1 𝑥𝑖 = 𝜎(𝑤0 + 𝑤1𝑥𝑖)

If 𝑦𝑖 = 0

𝑃 𝑦𝑖 = 0 𝑥𝑖 = 1 − 𝜎(𝑤0 + 𝑤1𝑥𝑖)

𝑃 𝑦𝑖 𝑥𝑖 : conditional 

probability, based on the 

model parameters (𝑤0, 𝑤1)

Input 𝑥𝑖 ​ belongs to 

the correct class for 

the 𝑖-th observation

Likelihood function 𝐿(⋅) is the product of

all 𝑃(𝑦𝑖|𝑥𝑖)

The higher 𝐿(⋅) is preferred!!

In practice, the negative log-likelihood

− ln 𝐿(⋅) is used for ease of computation

In this case, smaller value is preferred!!
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Learning Objective & NLL

Learning Objective

Find the parameter vector 𝑤 that maximizes classification 

performance on the given training data 𝐷.

Negative Log Likelihood (NLL)

• Negative value of the log of the likelihood function

• Used to define the loss function 𝐿(⋅)

𝐿 𝑤 = −
1

𝑁
෍

𝑖=1

𝑁

ln 𝑃(𝑦𝑖|𝑥𝑖)

𝑁: 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝐷
𝑤: 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑒𝑐𝑡𝑜𝑟
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Learning Apporach

The posterior probability 𝑃(𝑦𝑖 = 1|𝑥𝑖) is determined by 

the feature vector 𝑥𝑖 and parameters 𝑤.

Therefore, our goal is to find parameter 

𝑤 that maximizes the likelihood 𝐿(𝑤).

In other words, our goal is to find 

parameter 𝑤 that minimizes the NLL 

(Negative Log Likelihood − ln 𝐿(𝑤)).

𝑤∗ = 𝑎𝑟𝑔 max
𝑤

𝐿 𝑤 =
1

𝑁
෍

𝑖=1

𝑁

𝑃(𝑦𝑖|𝑥𝑖)

𝑤∗ = 𝑎𝑟𝑔 mix
𝑤

𝐿 𝑤

= −
1

𝑁
෍

𝑖=1

𝑁

ln 𝑃(𝑦𝑖|𝑥𝑖)

(Exactly same meaning)
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Binary Cross Entropy (BCE)

NLL (Negative Log Likelihood) and BCE (Binary Cross Entropy) 

Commonly used loss functions in binary classification, 

especially in logistic regression and neural networks.

Definition of BCE

𝐵𝐶𝐸 = −
1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 ⋅ log ො𝑦𝑖 + 1 − 𝑦𝑖 ⋅ log(1 − ො𝑦𝑖)

In binary classification with a 

sigmoid output, BCE and NLL 

are mathematically equivalent
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Learning with Gradient Descent

Loss Function

Negative Log Likelihood (NLL) Loss

Procedure

1) Initialization:

2) Feed Input

3) Compute NLL Loss Repeat until reaching to the end condition

Randomly Initializate Parameters

3) Update Parameters
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Feed-forward

Feed input 

to Model

ො𝑦𝑖 = 𝑤0 + ෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 = 𝑤0 + 𝒘𝒊
𝑻 ⋅ 𝒙𝒊

𝑥𝑖

ෝ𝒚𝒊

𝑁𝐿𝐿 = 𝐿 𝑊 = −
1

𝑁
෍

𝑖=1

𝑁

ln 𝑃 ො𝑦𝑖 𝑋𝑖

𝑤𝑗 ← 𝑤𝑗 − 𝛼
𝜕𝐿 𝑊

𝜕𝑤𝑗

𝜕𝐿 𝑊

𝜕𝑤𝑗
= −

1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 − 𝜎 𝑊𝑇𝑋𝑖 𝑥𝑖𝑗

, 𝑤ℎ𝑒𝑟𝑒 𝑿𝑖 = [𝑥𝑖1, ⋯ , 𝑥𝑖𝑑]

Repeat until the 

terminaltion condition 

is satisfied

미분과정 생략
자세한 내용은
다음 슬라이드 참조
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Derivative of Loss Function (1/3)

𝐵𝐶𝐸 = 𝑁𝐿𝐿 = 𝐿 𝑊

= −
1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 ⋅ log ො𝑦𝑖 + 1 − 𝑦 ⋅ log(1 − ො𝑦𝑖)

= −
1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 ⋅ 𝜎(𝑧𝑖) + 1 − 𝑦 ⋅ log(1 − 𝜎(𝑧𝑖))

𝑤ℎ𝑒𝑟𝑒 𝑧𝑖 = 𝑊𝑇𝑋𝑖

𝜕𝐿 𝑊

𝜕𝑤𝑗

미분 목표: 모든 파라미터 

즉, 𝑤0, 𝑤1, ⋯ , 𝑤𝑗 , ⋯ , 𝑤𝑑 에 

대하여 각각 미분

𝑑

𝑑𝑥
𝜎 𝑥 =

𝑒−𝑥

1 + 𝑒−𝑥 2

=
1

1 + 𝑒−𝑥 ⋅
𝑒𝑥

1 + 𝑒𝑥

= 𝜎 𝑥 − (1 − 𝜎 𝑥 )

Again, 시그모이드 미분



40 / 44

Derivative of Loss Function (2/3)

𝜕

𝜕𝑤𝑗
ln 𝜎(𝑧𝑖) =

1

𝜎(𝑧𝑖)
𝜎′(𝑧𝑖)

𝜕𝑧𝑖

𝜕𝑤𝑗

𝜕

𝜕𝑤𝑗
ln 𝜎(1 − 𝑧𝑖) =

1

𝜎(1 − 𝑧𝑖)
⋅ −1 ⋅ 𝜎 𝑥 − (1 − 𝜎 𝑥 ) ⋅

𝜕𝑧𝑖

𝜕𝑤𝑗

합성함수 미분 (Chain Rule)

ln 함수 미분 × 𝜎(⋅)미분 × 𝑧𝑖 미분

ln 함수 미분 × 중간함수 (1 − 𝑧𝑖)미분 × 𝜎(⋅)미분 × 𝑧𝑖 미분

시그모이드 미분 대입

𝜕

𝜕𝑤𝑗
ln 𝜎(𝑧𝑖) =

1

𝜎(𝑧𝑖)
𝜎 𝑥 − (1 − 𝜎 𝑥 )

𝜕𝑧𝑖

𝜕𝑤𝑗
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Derivative of Loss Function (3/3)

미분 결과를 손실 함수에 대입

𝐿(𝑊) = −
1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 ⋅ 𝜎(𝑧𝑖) + 1 − 𝑦i ⋅ log(1 − 𝜎(𝑧𝑖))

𝜕𝐿 𝑊

𝜕𝑤𝑗
= −

1

𝑁
෍

𝑖=1

𝑁
𝜕

𝜕𝑤𝑗
𝑦𝑖 ⋅ 𝜎(𝑧𝑖) + 1 − 𝑦 ⋅ log(1 − 𝜎(𝑧𝑖))

불필요 항 약분, 항을 간단히 정리

𝜕𝐿 𝑊

𝜕𝑤𝑗
= −

1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 ⋅
𝜎 zi 1 − 𝜎 zi

𝜎 zi

𝜕𝑧𝑖

𝜕𝑤𝑗
+ 1 − 𝑦

𝜎 zi 1 − 𝜎 zi

1 − 𝜎 zi

𝜕𝑧𝑖

𝜕𝑤𝑗

𝜕𝐿 𝑊

𝜕𝑤𝑗
= −

1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 − 𝜎 zi

𝜕𝑧𝑖

𝜕𝑤𝑗
= −

1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 − 𝜎 𝑊𝑇𝑋𝑖 𝑥𝑖𝑗
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Terminaltion Condition

Repeat until 

the terminaltion 

condition is 

satisfied

Fix the number of updates.

Update the parameters until the desired 

performance is achieved.

Update the parameters until the norm of the gradient 

(partial derivative vector) falls below a threshold.

(If the parameter updates are below a meaningful 

threshold, stop the optimization.)
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Learning Method Comparison

Aspect Batch Learning Mini-batch Learning

Data Unit Entire dataset
Small batches 
(e.g., 32, 64 samples)

Memory Usage High Moderate

Update Frequency Once per epoch Once per mini-batch

Convergence Speed Slow but stable Fast and efficient

Stability Very stable Relatively stable

Computational
Efficiency

Lower 
(due to large dataset)

High 
(GPU-friendly)

Best Use Case
Small datasets 
that fit in memory

Standard deep learning

Examples
Linear regression, 
full batch training

CNN, RNN training
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■ We will explore real world problem

- Practice & Exercise!

- Have a fun!

In the Next Lecture



수고하셨습니다 ..^^..
Thank you!
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