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Concept of Regression & Dataset



Concept of Regression

B Regression
- Represents the relationship between input and output variables.

- Used to predict the output value for a new input value or to understand the effect of

input variables on the output variable.

- Output (predicted value): continuous value

B Example

- Predicting house prices based on house size — Relation, Prediction
- Relation: What is the relationship between house price and house size?

- Prediction: If the house size is 1,202, what is the expected house price?

A




Example

Price(per 1,000 dollars)

3500

Size(feet?)




Regression vs. Classification

B Regression

- Expresses the degree of proximity (distance) using colors.

- Example: Blue represents nearby locations, while red represents distant locations, etc.
B Classification

- Represents different object types with different colors.

- Example: Each pixel is distinguished, where 0 means a desk, 1 means a chair, etc.
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Dataset

B Dataset in Regression (Supervised Learning Dataset)
— N

- x;: i-th input data of the dataset.
- It is represented as a d-dimensional vector x; = [x;1, X2, -, Xiq]T, where x;j is the j-th
feature of x;.
- ¥;: The real-valued output corresponding to the i-th input in the dataset
- while y; can be a multivariate vector, in this context it is limited to a scalar value.

- N: The size of dataset

VAL




Purposes of Regression

B Two Purposes of Regression
- Prediction Aspect
- Predicting the output value for a new input value.

- Example:
- Interpretation or Relationship Aspect

- Understanding how the output value changes concerning the input value.

- Example: ?
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Learning

B Learning in Regression

- The process of finding a function that

- The process of finding a function that

Training Dataset

Learning Process

l

X, —> Learned Function f ——> Yi=f(x)
for all i
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Correlation (correlation) # Causation
Regression identifies correlation and
does not imply causation.

Therefore, when interpreting results,
they should not be understood as

causal relationships.




Commonly Confused Terms in Machine Learning

Category Terms

Input Variable Feature, Independent Variable

Output Variable Dependent Variable

Input Data Observation, Feature Vector, Sample, Input Value, Input Vector
Actual Value Ground Truth, Label, Class

Predicted Value Output Value, Result Value

Regression Regression Model, Regression Function

Loss Function Cost Function, Objective Function

Model Parameters Model Weights, Model Hyperparameters




Simple Linear Regression



Principle of Simple Linear Regression

B Simple Linear Regression
- Basic model consisting of one independent variable and one dependent variable.
w = [wy, wy]"

- w is a parameter vector (also called coefficients or weights) and consists of two parameters.

B Notation
fw X)) = fin(x;) = wy + wyx;
T
Xi = [xm, Xi2, Xi3,"""» xij,"‘;xid] € R%

- x;: The i-th input value of the training/testing data.
- d: The number of dimensions of the input value.
* In the case of simple linear regression, d=1,
so instead of representing the vector as x; = [x;;]7, it is expressed as a scalar x;.

- w: The parameters of the regression model (also called coefficients or weights).

12 /7 Ul




Simple Linear Regression

B Simple Linear Regression Model

fw(xi) = wo + wix;
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Loss Function

B Loss Function
- Calculated by comparing the actual values with the predicted values.
- When training data is given,

- the predicted values of the linear regression model vary depending on w.

N

1
L(w) = N
1—=1

e N: Number of input values

o fw(x;): The ith predicted value (= ¢; )

e y;: The 2th actual value
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Loss Function: Key Idea

B Using the training dataset D = {(x;, y;)}\",

- determine w = [wy, w;]7 so that f,,(x;) is

N
* : : 1 2
= arg min L(w) = arg min — Z (yi — fw(zi))

w .
1—1

w*: The value of w that minimizes the loss function L(w), representing the

optimal parameters of the model. It is given by:

w;
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Training Objective

B The loss function (also known as the cost function or training objective

function) is used to train the model parameters w = [w,, w;]".

B The smaller the loss function L(w), the closer the model’s predicted output

fw(x;) is to the actual value y; for the training data.
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Example of Loss Function

Assuming wy = 0 in Simple Linear Regression

Category Description

Data D = {(zi,u:)}; 4

Model fw(z) = wo + wix

fw(z) = wiz (assuming wy = 0)

T
Wp
Parameters W =
un

wq

Loss Function L(w) = % 2;1 (y; — fw.w,r(-?'f:-:'))2

E

Objective w* = arg miny L(w)

wi = arg min,, L(w)




Handy Computing on Loss Function

HD={11),22),33),44),}
When

fw () =wix (wy = 0)
Fol@)=wx (wy=0)

Loss L(wl) = MSE
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When w; = 0.5

Squared Error

X Actual y Predicted f(x) = 0.5x | Error y — f(x) (y B f(x))2
1 1 0.5 0.5 0.25
2 2 1.0 1.0 1.00
3 3 1.5 1.5 2.25
4 4 2.0 2.0 4.00

Sum of squared errors

=025+ 100 + 225+ 400 =175

7.5
L(wy = 0.5) = = = 1875
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Handy Computing on Loss Function

B D={(11)(22),33),44),}

fw () =wix (wy = 0)

f 'n [‘]' = WX [:“:'[: = []]'

Loss L(wl) = MSE
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When wy = 1.5

Squared Error

X Actual y Predicted f(x) = 1.5x | Error y — f(x) (y B f(x))2
1 1 1.5 -0.5 0.25
2 2 3.0 -1.0 1.00
3 3 4.5 -1.5 2.25
4 4 6.0 -2.0 4.00

Sum of squared errors

=025+ 100 + 225+ 400 =175

7.5
L(w; = 1.5) == = 1.875
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Handy Computing on Loss Function

B D={(11)(22),33),44),}

fw () =wix (wy = 0)

fo)=wx (wy=10)

Loss L(wl) = MSE
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When wy = 1.0

Squared Error

X Actual y Predicted f(x) = 1.0x | Error y — f(x) (y B f(x))2
1 1 1.0 0 0
2 2 2.0 0 0
3 3 3.0 0 0
4 4 4.0 0 0

Sum of squared errors

=0+0+0+0=0

0
L(w; = 1.0) =

—=0
4
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This animation shows how the loss changes

Loss L(wl) = MSE

as we move the weight w;.

First, at w; = 0.5, the loss is 1.875 because
the slope is too small and the model

underfits.

Then we move to w; = 1.5, the loss is again
1.875, showing that the loss curve is

wl=0.5, L=1.875 symmetric around the optimal value.
®

Finally, at w; = 1.0, The loss becomes zero.

This is the optimal slope since the model

perfectly fits all data points.
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Types of Loss Functions

B There are various loss functions, but the most used ones are:

- Mean Square Error (MSE)

25 / Ul




Loss function graph for simple linear regression

B Commonly, MSE is typically convex
- A single global minimum

- The shape of the graph depends on the parameter space, with a bowl-shaped surface

where the minimum corresponds to the optimal weight w™.
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Loss function graph for simple linear regression

B MAE (Average of all absolute errors)
- All errors contribute equally (no squaring)

- Easy to interpret: “On average, predictions are off by this much”

- More robust to outliers than MSE

MAE Loss Surface L(wO, wl)

MAE visual: data vs prediction
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Gradient Descent in SLR



Training Process of a Simple Linear Regression Model

B Given the loss function L(w)

- The training process aims to find the parameters w* = [wg, w;] that minimize the loss

function
w* = arg min L(w)

%%

- The simplest method is to try several candidate values for the parameters w = [wy, w;]"

in the model and select the one that results in the smallest loss function value.

- However, determining the candidate values is not always straightforward.
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Goal of Gradient Descent

B Finding w* by Minimizing the Loss Function L(w)
B Given the loss function L(w),
- the goal is to find:

w* = arg min L(w)
w

B Gradient Descent
- Optimization algorithm that uses the gradient to minimize the given loss function.

- The gradient at a point represents the slope of the tangent to the function at that point.
- This slope indicates the direction in which the function increases the most.

+ Therefore, the negative gradient direction of the current point w = [wy, w;]7, given by

0
5o Lw)
is the direction that maximally decreases the loss function L(w),

and this is called the gradient descent direction.
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Goal of Gradient Descent
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Gradient Descent Procedure

B Start from an initial value w = [wy, w;|”T

(e.g, wo = 0,w; = 1).

B Iteratively update w in the direction that reduces L(w)

until the stopping condition is met.

1. Update for w (bias term):

0
Owy
2. Update for w; (weight coefficient):

3, | |
Oowq L(wg, w)

Wy < Wy — @

L ( Wp, W1 )

Wy — W] — O
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Applying Gradient Descent

B Following factors must be considered:
- Initial Value: Where should the optimization start?
- Gradient: In which direction should the parameters be updated?

- Learning Rate: By how much should the parameters be updated each step?

B These factors influence the convergence speed and accuracy of the

optimization process.

33/ ul




Applying Gradient Descent: Initial Value

B Initial Value: Where to Start?
B Choice of the initial value

- can make it difficult to find the global minimum of the loss function or

- significantly affect the time required to find it.

B Initial state of w is an important factor in optimization.
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Applying Gradient Descent: Gradient

B Gradient: In Which Direction to Update?

- When the gradient is positive — The loss function value is increasing
- multiply the gradient by negative (-): move in the negative direction.
- When the gradient is negative — The loss function value is decreasing

- multiply the gradient by negative (-): move in the positive direction.

Wy
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Applying Gradient Descent: Learning Rate

B Learning Rate: How Much to Update?

- If the learning rate is too high — The loss function may diverge instead of converging.

- If the learning rate is too low

— The convergence to the minimum can be slow or

might not reach the minimum at all.

- Thus, selecting an appropriate learning rate based on experience and dynamically

adjusting it is crucial.
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Multiple Linear Regression



Multiple Linear Regression

B Simple Linear Regression

- Relationship between one independent variable and one dependent variable.

B Multiple Linear Regression

- Relationship between two or more independent variables and one dependent variable.

Z 71=4(1,000€2] 71&)

469
230
300

170
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Representation of Multiple Linear Regression
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Training of MLR

B By applying gradient descent using Mean Squared Error (MSE) as the loss
function, the parameters

W = [wy,wyq, -, wy]T € R+

are updated iteratively

{—H
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B We will explore real world problem

- Practice & Exercise!

- have a fun!
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Thank you!
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