
Dept. SW and Communication Engineering

Prof. Giseop Noh (kafa46@hongik.ac.kr)

Machine Learning

mailto:kafa46@hongik.ac.kr

2 / 29

■ Pandas Application

- Grouping, Combining

- Pivoting, Reshaping

- Custom Functions

■ Working with Database using Pandas

- SQLite

- Create/Load/Handing DB

■ Regression Preview

- Using Numpy

- Using Scikit-learn

Lecture Goals

3 / 29

4 / 29

■ One of the most powerful and widely used Python libraries for data analysis.

■ Beyond basic tasks like loading CSV files or selecting rows and columns.

■ Offers advanced data manipulation tools

- Cleaning and transforming large datasets

- Structuring data for machine learning

- Handling real-world data challenges efficiently

Recap Pandas Basics

5 / 29

6 / 29

■ Grouping Data and Computing Summary Statistics

■ In many analysis tasks, we group data by categories

- E.g., genre, country, customer

■ Pandas provides the groupby() method to split data into groups.

■ Combine with agg() or simple functions (mean, sum, std) to compute:

- Examples

 Average sales by country

 Total revenue by artist

 Standard deviation of ratings by genre

Grouping

7 / 29

■ DataFrame.groupby()

- Simply groups data based on one or more keys

- By itself, it does not perform any calculations. Returns a “grouped” object

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x...>

- Using groupby() Alone

 Iterating Through Groups (English Explanation)

DataFrame.groupby

for name, group in df.groupby("Genre"):

print("Group:", name)

print(group.head(2))

team: A
team score hours

0 A 85 5
1 A 90 6
team: B

team score hours
2 B 78 4
3 B 88 5
team: C

team score hours
4 C 95 7
5 C 92 6

8 / 29

■ groupby(["col1", "col2", ...])

- Groups data based on combinations of multiple columns

- Each unique combination of values forms one group.

- By default, the result uses a MultiIndex

 But you can set as_index=False to return a flat DataFrame.

`groupby` with Multiple Columns

import pandas as pd
data = {

"Country": ["USA", "USA", "Canada", "USA", "Canada", "Canada"],
"Genre": ["Rock","Pop", "Rock", "Rock","Jazz", "Rock"],
"Year": [2023, 2023, 2023, 2024, 2023, 2024],
"Revenue": [10, 15, 8, 12, 7, 6]

}
df = pd.DataFrame(data)
out = df.groupby(["Country", "Genre"])["Revenue"].sum()
print(out)
print("---" * 10)
out_flat = df.groupby(

["Country", "Genre"],
as_index=False)["Revenue"].sum()

print(out_flat)

Country Genre
Canada Jazz 7

Rock 14
USA Pop 15

Rock 22
Name: Revenue, dtype:
int64

Country Genre Revenue

0 Canada Jazz 7
1 Canada Rock 14
2 USA Pop 15
3 USA Rock 22

9 / 29

■ agg() (aggregate) function

- Summarize data by applying one or more statistical functions to each group.

■ Basic Usage

■ Different Functions for Different Columns

DataFrame.agg (1/2)

df.groupby("Genre")["Revenue"].agg(["sum", "mean", "std"])

df.groupby("Genre").agg({
"Revenue": ["sum", "mean"],
"Price": "max"

})

10 / 29

■ Without groupby()

- Use agg() directly on a DataFrame

 Computes the statistics across all numeric columns.

■ Custom Aggregation

- Define custom functions using lambda

DataFrame.agg (2/2)

df.agg(["sum", "mean", "std"])

df.agg({
"Sales": lambda x: x.max() - x.min(),
"Profit": "mean"

})

11 / 29

Exercise: groupby + agg

import pandas as pd

Create a DataFrame with teams and performance data
data = {

"team": ["A","A","B","B","C","C","A","B","C","A"],
"score": [85,90,78,88,95,92,89,84,91,87],
"hours": [5,6,4,5,7,6,8,3,4,7]

}
df = pd.DataFrame(data)

Group data by team and calculate mean and standard deviation
result = df.groupby("team").agg({"score":"mean", "hours":"std"})
print(result)

score hours
team
A 87.750000 1.290994
B 83.333333 1.000000
C 92.666667 1.527525

12 / 29

13 / 29

■ Real-world datasets often come from multiple sources.

■ Pandas offers several ways to combine DataFrames:

- merge: SQL-style join on keys

- concat: Concatenate DataFrames along rows or columns

- join: Merge DataFrames by index

■ Combining Exercise

- Source Codes:

https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regre

ssion_preview#grouping_exercise

Combining DataFrames

https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regression_preview#grouping_exercise

14 / 29

15 / 29

■ `pivot_table` reshapes and summarizes data, similar to Excel Pivot Tables.

- It turns long/transactional data into a compact matrix for quick comparison in dataset

■ Core Syntax

DataFrame.pivot_table

df.pivot_table(
values=None,
index=None,
columns=None,
aggfunc="mean",
fill_value=None,
margins=False,
margins_name="All",
dropna=True,
observed=False

)

Parameters (Signatures)

values: Column(s) to aggregate (e.g., "Revenue"). If None, all numeric
columns may be aggregated.

index: Row groups (one or more columns).

columns: Column groups (one or more columns).

aggfunc: Aggregation function(s), e.g., "sum", "mean", "count", np.sum,
or a list/dict for multiple metrics.

fill_value: Replace NaN in the result with a value (commonly 0).

margins: Add row/column totals (True/False).

margins_name: Label for totals (default "All").

dropna: Drop columns in the result that are all-NaN.

observed: For categorical groupers, include only observed combinations
(perf/size optimization).

16 / 29

■ Source Codes for pivot_table

- https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regre

ssion_preview#pivot_exercise

pivot_table Exercise

https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regression_preview#pivot_exercise

17 / 29

18 / 29

■ Why use Databases with Pandas?

- Beyond CSV or Excel, Pandas integrates seamlessly with SQL databases like SQLite.

- Ideal for structured datasets that fit well into tables with relationships.

■ SQL?

- SQL is a standard language used to manage and query relational databases.

- It allows to store, retrieve, and manipulate structured data efficiently.

■ Key Advantages

- Store, query, and manipulate large datasets efficiently.

- Use SQL queries directly with Pandas DataFrames.

- Combine data analytics (Pandas) with data persistence (SQLite).

Why use Databases with Pandas?

19 / 29

Operation Keyword Description

Create CREATE TABLE Define a new table

Insert INSERT INTO Add new records

Select SELECT ... FROM
Retrieve data from tabl
es

Update UPDATE ... SET Modify existing records

Delete DELETE FROM Remove records

Join JOIN
Combine data from m
ultiple tables

Key SQL Operations

20 / 29

■ Pandas integrates seamlessly with SQLite through the `sqlite3` module

- Lightweight, serverless relational database engine.

- Not require a separate server process.

- Stores the entire database in a single file (e.g., `sample.db`).

- Convenient for learning, prototyping, and handling

- Use familiar SQL commands such as

`SELECT`, `INSERT`, and `UPDATE`.

■ Capability of SQLIte

- Maximum DB size: 281 TB

- Columns in a Table: 2,000

- Rows in a Table: 264 ≈ 1.8 × 1019 (약 18경개)

SQLite

21 / 29

■ Pandas can also connect to other relational databases such as MySQL and

PostgreSQL.

- Instead of sqlite3, you would typically use connectors such as pymysql (for MySQL) or

psycopg2 (for PostgreSQL).

- Combined with SQLAlchemy, Pandas can use the same read_sql() and to_sql() methods

to read from or write to those databases as well.

- Pandas a very versatile tool for integrating with various database systems.

Note for SQLite

22 / 29

■ The workflow

- Use Pandas to create a DataFrame with 10 rows of student data (ID, name, score).

- Open a connection to sample.db using the sqlite3 module.

- Save the DataFrame into the database as a table named students using Pandas’ to_sql()

method.

- If the table already exists, we can choose to replace or append data.

- Close the connection to finalize the operation.

Typical Workflows

23 / 29

■ Source Codes

- https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regre

ssion_preview#sqlite_exercise

Pandas + DB Excercise

https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regression_preview#sqlite_exercise

24 / 29

■ Chinook (음원스토어데이터베이스)

- A sample relational database designed for learning database management and practicing SQL

queries. It models a fictional digital media store and was developed as an alternative to the

Northwind database.

- Useful Links:

https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regression_previe

w#chinook_links

■ Key features

- Digital media store model: Contains information about albums, artists, media tracks, customers,

employees, and invoices.

- Based on real data: The media-related data is derived from an actual iTunes library.

- Multiple formats supported: Available for SQLite, MySQL, SQL Server, PostgreSQL, Oracle, and

other database management systems.

■ Codes for Exercise:

https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regression_

preview#chinook_exercise

Actual Practice using Real Data

https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regression_preview#chinook_links
https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regression_preview#chinook_exercise

25 / 29

26 / 29

■ Regression is one of the simplest machine learning algorithms.

■ Its goal is to predict a continuous output variable (y) from one or more input

variables (X).

■ Common examples include:

- Study hours → Exam scores

- Advertising expenses → Sales revenue

What is Regression?

27 / 29

Mathematical form of a simple linear regression

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖

• 𝑦 : dependent variable (target to predict)

• 𝑥 : independent variable (input feature)

• 𝛽0 : intercept (constant term)

• 𝛽1 : slope (effect of x on y)

• 𝜖 : error term

28 / 29

■ Source Codes for Toy Practice

https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regress

ion_preview#regression_exercise

■ Evaluating Prediction Performance

- Measure how well the regression line fits the data using Mean Squared Error (MSE).

Regression Toy Practice

Predictions from the regression line
pred = model.predict(df[["hours"]])

Calculate Mean Squared Error
mse = np.mean((df["scores"] - pred)**2)
print("MSE:", mse)

https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regression_preview#regression_exercise

29 / 29

■ https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_a

nd_regression_preview#homeworks

Homeworks

https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regression_preview#homeworks

Thank you!

