Machine Learning

Pandas Application & Regression Preview

Dept. SW and Communication Engineering
Prof. Giseop Noh (kafa4d6@hongik.ac.kr)

mailto:kafa46@hongik.ac.kr

Lecture Goals

B Pandas Application
- Grouping, Combining
- Pivoting, Reshaping

- Custom Functions

B Working with Database using Pandas
- SQLite

- Create/Load/Handing DB

B Regression Preview
- Using Numpy

- Using Scikit-learn

2/ 29

Pandas Applications

Recap Pandas Basics

B One of the most powerful and widely used Python libraries for data analysis.
B Beyond basic tasks like loading CSV files or selecting rows and columns.

B Offers advanced data manipulation tools
- Cleaning and transforming large datasets
- Structuring data for machine learning

- Handling real-world data challenges efficiently

L/ 29

Grouping

Grouping

B Grouping Data and Computing Summary Statistics

B In many analysis tasks, we group data by categories

- E.g., genre, country, customer

B Pandas provides the groupby() method to split data into groups.

B Combine with agg() or simple functions (mean, sum, std) to compute:
- Examples
- Average sales by country
- Total revenue by artist
- Standard deviation of ratings by genre

b/ 29

DataFrame.groupby

B DataFrame.groupby/()

- Simply groups data based on one or more keys

- By itself, it does not perform any calculations. Returns a “grouped” object

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x...>

- Using groupby/() Alone

- Iterating Through Groups (English Explanation)

for name, group in df.groupby("Genre"):

print("Group:", name)

print(group.head(2))

/29

team: A

team score
(%] A 85
1 A 90
team: B

team score
2 B 78
3 B 88
team: C

team score
4 C 95
) C 92

‘groupby’ with Multiple Columns

B groupby(["coll", "col2", ...])
- Groups data based on combinations of multiple columns
- Each unique combination of values forms one group.
- By default, the result uses a Multilndex

- But you can set as_index=False to return a flat DataFrame.

import pandas as pd

data = {

"Country": ["USA", "USA", "Canada", "USA", "Canada", "Canada"],

"Genre": ["Rock","Pop", "Rock", "Rock","Jazz", "Rock"],

"Year": [2023, 2023, 2023, 2024, 2023, 20241, Country Genre

"Revenue": [10, 15, 8, 12, 7, 6] Canada Jazz 7
} Rock 14
df = pd.DataFrame(data) USA Pop 15
out = df.groupby(["Country", "Genre"])["Revenue"].sum() Rock 22
print(out) Name: Revenue, dtype:
print("---" * 10) 1nt64

out_flat = df.groupby(Country Genre Revenue

["Country", "Genre"],

: ;) © Canada Jazz 7
as_index=False)["Revenue"].sum() 1 Canada Rock 14
print(out_flat) p) USA Pop 15
3 USA Rock 22

DataFrame.agg (1/2)

Bl agg() (aggregate) function

- Summarize data by applying one or more statistical functions to each group.

B Basic Usage

df.groupby("Genre")["Revenue"].agg(["sum", "mean", "std"])

B Different Functions for Different Columns

df.groupby("Genre").agg({
"Revenue": ["sum", "mean"],
"Price": "max"

1)

q /29

DataFrame.agg (2/2)

Bl Without groupby()

- Use agg() directly on a DataFrame

df.agg(["sum", "mean", "std"])

- Computes the statistics across all numeric columns.

B Custom Aggregation

- Define custom functions using lambda

df.agg({
"Sales": lambda x: x.max() - x.min(),
"Profit": "mean"

})

1o/ 29

Exercise: groupby + agg

import pandas as pd

Create a DataFrame with teams and performance data
data = {
"team": ["A","A","B","B","C","C","A","B","C","A"],
"score": [85,90,78,88,95,92,89,84,91,87],
"hours": [5,6,4,5,7,6,8,3,4,7]
}
df = pd.DataFrame(data)

Group data by team and calculate mean and standard deviation

result = df.groupby("team”).agg({"score":"mean", "hours":"std"})
print(result)

score hours

team

A 87.750000 1.290994
B 83.333333 1.000000
C 92.666667 1.527525

11 /729

Combining

12 /29

Combining DataFrames

B Real-world datasets often come from multiple sources.

B Pandas offers several ways to combine DataFrames:
- merge: SQL-style join on keys
- concat: Concatenate DataFrames along rows or columns

- join: Merge DataFrames by index

B Combining Exercise

- Source Codes:

https://www.deepshark.org/courses/machine learning 1/w/06_pandas_apps_and regre

ssion preview#grouping exercise

13729

https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regression_preview#grouping_exercise

Pivoiting

DataFrame.pivot_table

B pivot_table’ reshapes and summarizes data, similar to Excel Pivot Tables.

- It turns long/transactional data into a compact matrix for quick comparison in dataset

Parameters (Signatures)
B Core Syntax values: Column(s) to aggregate (e.g., "Revenue”). If None, all numeric
columns may be aggregated.

df.pivot table(
values=None,
index=None,
columns=None, aggfunc: Aggregation function(s), e.g., "sum", "mean", "count”, np.sum,
aggfunc= "mean", or a list/dict for multiple metrics.
fill_value=None, fill_value: Replace NaN in the result with a value (commonly 0).
margins=False,
margins name="All",
dropna=True,
observed=False dropna: Drop columns in the result that are all-NaN.

index: Row groups (one or more columns).

columns: Column groups (one or more columns).

margins: Add row/column totals (True/False).

margins_name: Label for totals (default "All").

observed: For categorical groupers, include only observed combinations
(perf/size optimization).

15/ 29

B Source Codes for pivot_table

- https://www.deepshark.org/courses/machine learning 1/w/06 pandas apps and regre

ssion preview#pivot exercise

1b / 29

https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regression_preview#pivot_exercise

Working with DB

Why use Databases with Pandas?

Bl Why use Databases with Pandas?

- Beyond CSV or Excel, Pandas integrates seamlessly with SQL databases like SQLite.

- Ideal for structured datasets that fit well into tables with relationships.

B SOL?
- SQL is a standard language used to manage and query relational databases.

- It allows to store, retrieve, and manipulate structured data efficiently.

B Key Advantages

- Store, query, and manipulate large datasets efficiently.
- Use SQL queries directly with Pandas DataFrames.

- Combine data analytics (Pandas) with data persistence (SQLite).

18 / 29

Key SQL Operations

Create CREATE TABLE Define a new table
Insert INSERT INTO Add new records
Select SELECT ... FROM Retrieve data from tbl
Update UPDATE ... SET Modify existing records
Delete DELETE FROM Remove records

Join JOIN Combine data from m

ultiple tables

19 /29

SQLite

Pandas integrates seamlessly with SQLite through the ‘sqlite3" module
- Lightweight, serverless relational database engine.
- Not require a separate server process.
- Stores the entire database in a single file (e.g., 'sample.db").
- Convenient for learning, prototyping, and handling
- Use familiar SQL commands such as
EASY SIMPLE B
'SELECT", 'INSERT", and "UPDATE". - IGHTWIGHT &FAST'*’“
SER\[QIEL%ESS
— & b
— File-based‘ NOAC”_)IW! Am:eur

Capability of SQLIte Bt (ol
- Maximum DB size: 281 TB ;
- Columns in a Table: 2,000

- Rows in a Table: 2% ~ 1.8 x 101° (% 183 7))

20 / 29

Note for SQLite

B Pandas can also connect to other relational databases such as MySQL and

PostgreSQL.

- Instead of sqlite3, you would typically use connectors such as pymysql (for MySQL) or
psycopg? (for PostgreSQL).

- Combined with SQLAlchemy, Pandas can use the same read_sql() and to_sql() methods

to read from or write to those databases as well.

- Pandas a very versatile tool for integrating with various database systems.

21 / 29

Typical Workflows

B The workflow

- Use Pandas to create a DataFrame with 10 rows of student data (ID, name, score).

- Open a connection to sample.db using the sqlite3 module.

Save the DataFrame into the database as a table named students using Pandas’ to_sql()

method.

If the table already exists, we can choose to replace or append data.

Close the connection to finalize the operation.

22 / 29

B Source Codes

- https://www.deepshark.org/courses/machine learning 1/w/06 pandas apps and regre

ssion_previewf#sqlite exercise

23/ 29

https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regression_preview#sqlite_exercise

Actual Practice using Real Data

B Chinook (& 2 EO0] H|O|E{H]|0]| %)
- A sample relational database designed for learning database management and practicing SQL
queries. It models a fictional digital media store and was developed as an alternative to the

Northwind database.
- Useful Links:

https://www.deepshark.org/courses/machine learning 1/w/06 pandas apps and regression previe

wi#chinook links

B Key features
- Digital media store model: Contains information about albums, artists, media tracks, customers,
employees, and invoices.
- Based on real data: The media-related data is derived from an actual iTunes library.

- Multiple formats supported: Available for SQLite, MySQL, SQL Server, PostgreSQL, Oracle, and

other database management systems.

B Codes for Exercise:

https://www.deepshark.org/courses/machine learning 1/w/06_pandas apps_and_ regression

preview#chinook exercise

24 / 29

https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regression_preview#chinook_links
https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regression_preview#chinook_exercise

Regression Preview

25/ 29

What is Regression?

B Regression is one of the simplest machine learning algorithms.

B Its goal is to predict a continuous output variable (y) from one or more input

variables (X).

B Common examples include:
- Study hours — Exam scores

- Advertising expenses — Sales revenue

2b / 29

Mathematical form of a simple linear regression

y=po+ P1x+Ee€

y . dependent variable (target to predict)

x . independent variable (input feature)

Bo : Intercept (constant term)

B; : slope (effect of x on y)

€ . error term

27/ 29

Regression Toy Practice

B Source Codes for Toy Practice

https://www.deepshark.org/courses/machine learning 1/w/06 pandas apps and regress

ion_preview#regression_exercise

B Evaluating Prediction Performance

- Measure how well the regression line fits the data using Mean Squared Error (MSE).

Predictions from the regression line
pred = model.predict(df[["hours"]])

Calculate Mean Squared Error

mse = np.mean((df["scores"] - pred)**2)
print("MSE:", mse)

28 / 29

https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regression_preview#regression_exercise

B https://www.deepshark.org/courses/machine learning 1/w/06 pandas apps_a

nd regression preview#homeworks

29 / 29

https://www.deepshark.org/courses/machine_learning_1/w/06_pandas_apps_and_regression_preview#homeworks

