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Linear Algegbra - Vector



Vector

B In physics,
- A vector is a quantity that has both magnitude and direction and is represented by an arrow.
- Length of arrow: magnitude of the vector

- Direction of arrow: direction of the vector

Bl Concept of Vector in ML

- Collection of values (data)

- A vector has an order

B Representation of Vector
- Denoted in bold lowercase letters.
X = (.xl, xZ, x3)

- Can be represented as a column- or row vector with Matrix
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Transpose & Vector Interpretation

. 4
B Transpose of x is x!

x1 a
X = <x2>, xT = (xq,%x5,x3)7 _y
X3

B Example of Vector Interpretation =

>

1 Origin
a=[? :
(34

@ First axis: How far from origin N
[ b |

@ Second axis: How far from origin
A




n-Dimensional Space and n-Vector

B n-vector

- A vector with n components

X1

X2
x=1.

xn

B n-vector exists in n-dimensional space

x €ER?




Vector Operations - Add

B Add

n Origin

3+ (—2) =1 € What this means?

==
0

Think about carefully length & direction and adding
8

00¢ Why not
this way?7??




Vector Operations - Scaling (multiplication)

Scaling A
. . y
I\gul’ilpl{/l[n?_talyec;or by a scalar It changes the magnitude and direction
&C;i;{HHuﬁ B\ﬁ; 1ot u along the line where the given vectar lies.
—= , =0 1 In other words, it means 'scaling'.
Uy
keR, and u=\| .
Uy, ol
/ >
Uuq ku1 X
Uy ku
ku =® : = . 2 ~
value of vector scaling | Toy example ]
Scale + er/or 2 2
w=(?) 0.5u=0.5(1)
A B 7|: Scalar 1
"Scaler" tE= "Scalar" 2t £ &
T 2u=2(i)=(;) —2u=-2(
@%%E ni?el-al_n




Vectors and Data Preprocessing

B Interpreting a vector as a point in space

B ML dataset to be considered as a single point in a dimensional space

corresponding to the number of observed features

B By treating vectors as points in space,
- data can be visualized in various ways
- helping to intuitively understand its characteristics

- Additionally, a data preprocessing process is applied to improve the performance of the

model.

1o




Data Preprocessing

B Improves the performance of a model using a training dataset.

Bl Example: Data preprocessing through Standardization
- Zero-Centering: Shifting the dataset's mean to 0

- STD Adjustment: Adjusting the standard deviation of the data to 1

Original dataset Zero centering STD adjustment

11




Vector Norm

Il Definition of Norm

In mathematics, a norm is a function from a real or complex vector space to the non-

negative real numbers that behaves in certain ways like the distance from the origin.

(source: online wiki) $t22 =& 92 9|8 (HESL7|2&0{ M T

)

B Vector Norm

- Definition ||y|| = \/V12 +v2 + -+ V2, where v = (Vq,Vy,, V)7

- Toy Example 3D\

However n-dimension case @ @@ ==

2 Distancd is ambiguous.
v=(3)
3

We use the term 'Norm'
lv|]| = 22 +3%2 =+v13

2-dim real number space = distance from origin

12



https://en.wikipedia.org/wiki/Norm_(mathematics)
http://www.ktword.co.kr/test/view/view.php?no=4201

Formal Definition of Nrom

B Norm must satisfy following conditions
- Scaling: f(ax) = |a| f(x)

- Triangel Inequality: f(x +y) < f(x) + f(y)

- Positive Function: f(x) = 0

B General Representation of L, Norm

1
n P
X1, = leilp ,where X € R"
i=1

- p = 1, 2,00 are most frequently used.

- When p = o, The largest absolute value among the components of vector X

13




Vector Product (Scalar Product)

How to multiply a vector and a vector

Result of product: yields only scalar

The magnitude that changes when the size of one vector
Is applied to another vector (scalar)

Representation (notation)

u = (ul,uz, '")un)T
V= (vlrUZI ""vn)T

UV =Uv; +UV, + -+ U,y

Intuitive understanding = Refer to next slide

1




Vector Product (Scalar Product) - Intuitive Understanding

Meaning of multiplying a number to real number Meaning of multiplying vector & vector

____________

3 ix 20 = 6 uf o= (0)-()) =

______

3. i > )
x =@ "

We have a vecter u. 1. Size of ' ?

uOf Mg »2| 37| 7}

IH

L o
OH ﬁE [[H Since v has directions

Not all V13 affecttou

How does the size of vector u change? ol
=

X
2 & ofl = A}

ot

—
?

u-v = lullillvll cos 6|

______________

S Ef | OF 2EFO)
ERTEITES




Geometric Interpretation

u - v=||ull ||v|| cos @

Why ???

Uv=uv+uv, +- - +u,v,

; (" | (oot T |
- The second Cosine Law .‘ lwl| 2 = [lul|? + ||v||? = 2‘”u””v” cos 0!
"B e e
=v+ —vlI* = lull®* + lv|I* -2 u-
u W u=v+w |lu —v]||* = ||lu v u-v
W=u—v |
9 R EEREEES ’ 2u-v = |Jul|]? + |[v||I? = |lu — v||?
A —>C
v 2 2

2
2u-v=\/uf+---+u,21 +\/v12+---+v,% — Vg — )2+ + (U — )2
2u-v=us+-+ui+vi+v?— ((u% —2uy vy + V) + -+ (U + —2u,v, + v,%))

2u v =2uvy + o+ 2UnVy D) UV = Uy et UnTy
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Vector Product (Scalar Product)

u-v = |[ull l[v]lcos®
u-v Cosine Similarity(ZAFQl FALE)
cos @ = Quantifies the similarity between two vectors
”U” ”17” using the value of cos(0) between them.

* u-v can be expressed as (u, v)

« The dot product satisfies the commutative property

u-vO M w2t ve MHE 20[5tH O] Iff "= WA Asts 20|

nouv UM w2t vie w 2 v o iHR 2= 2|0

l
O If wyv;&= w; 2t v; 2 &4 LS oF 4f




Othogonal Vector

Bl Othogonal

- Two vectors that form a 90-degree angle with each other are said to be "orthogonal" to

each other.

- If vector u and v are orthogonal, where u-v =0

B Vector Projection

- Can be happen in 2D space or over dimensions

X
Projection, (y) = Tl cos(0)

pro .] I{: y I

18




Hyperplanes (X3 ™)

B In a d-dimensional vector space
- A hyper-plane has (d — 1)-dimensions

- A hyper-plane divides a higher-dimensional space into two separate regions

B What 'Hyper' means?

- byond, higher-dimensional, or extended from

In 2D space, ax + by +c =0 = A be drawn on a 2D plane

In 3D space, ax + by +cz+d =0 = A can be drawn in a 3D space

In 4D space, ax; + bx, + cx3+dx, +e=0 > A can be drawn in a 4D space

In 5D space, ax; + bx, + cx3 +dx, +exs+f =0

=>» A 7’7 can be drawn in a 5D space

In higher space, we need some generalized concept.

' "

- In math, it's called as '

19




Decision Boundary in ML Classification

B Hyperplane is a decision boundary in ML
- In 2D space

- Alinear classifier might draw a straight line to separate them.

A non-linear classifier might draw a more complex boundary.

Linear Decision Boundary Non-Linear Decision Boundary

Feature 2

(o]
(0]
—
3

frar)
©

(0]

('

Feature 1 Feature 1

Linear boundary in 2D vector space Non-linear boundary in 2D vector space

20




ML Classification example in 3D vector space

Bl In 3D vector space,

Linear Decision Boundary in 3D Non-Linear Decision Boundary in 3D

Linear boundary in 3D vector space Non-linear boundary in 3D vector space

21




Generalization of Decision Boundary in ML

B A decision boundary is typically represented as a function of input features.

- In a linear classifier, the boundary is a hyperplane defined by:

W-x+b=20
where,
W is the weigh vector,

x is the input feature vecor,

b is the bias term.
If W-x+ b > 0, the data is classified as Class 1.

If W-x+ b <0, the data is classified as Class 2.

22




Linear Algegbra - Matrix



Matrix (HE)

B Matrix?

- Engineering

* An arrangement of numbers or polynomials in a rectangular shape.

- For general audiences

- A collection of numbers arranged in a rectangular form.

- The Origin of Meaning (Matrix)

- Latin word mater (mother)

- In English womb, matrix, foundation, array.

- The basis for growth and development...

- The "mother" of mathematics
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Definition of Matrix

B A matrix m X n over a Ring R

Note. Ring R: satisfy: the commutative property of addition, The associative property of multiplication, The multiplicative identity

- Foreachrow i € {1,2,-:-,m} and for each column j € {1,2,--,n},

- A function maps each ordered pair (i, j) to an element 4;; € R

A= (ay),;

- According to a rigorous definition, a function that maps ordered pairs.

B Representation

A:(aij)i,j o (Aixj or Ayyoor Ay

25




Components in Matrix

Column (&)

OO ||WI

1 |2
A=1]14| |5 , Row (&)
\7 8/(9)/
Component (also called term, element, or entry)
* A value inside a matrix
a3 3

» Represented with a lowercase letter

« and indexed using subscripts

2b




Diagonal

Diagonal (F=CHZH41)

s Di 1E WEAPSEC]
HHO| AZ oM RLEZ Ot E 7IEX|E= M iagonal Entry (L4 S&)

iz 9lo) HE

A:(4 : 2) A=

Diagonal Matrix (CHZ 3 &)

23 CHZt 20| ot R = AT O HArZ e &

A= 4 6 - -
N 00

A= 0 0
0 O

2




Transpose Matrix

Transpose Matrix (FX| A=) B 0|5 A BXIZ T HA|
| A

(a;;)0ll CHSHO! (a;) > $IK| Q1 E

28




Types of Matrix

—

Zero (Null) Matrix (Bd &), 022 #7| A
o2

AEO| R= AT A

=

Symmetric Matrix (CH & &) A = ( 1 2
A= AT 9l \2 1

Square Matrix (SAIZ & &)

A
Aot BO| It 22 AE

I
Identity Matrix (S HE), I, 2 H7|
DEAEE0] 1, LIHX|=0 @ HAILHE
HEOM S g

29




Matrix Operation - Add/Sub/Scalar

B Matrix Addition / Subtraction
A+ B = (a;; + b;j)

A=(é i) A+B=(§i§ 212)2(160 182)
p=(C 8 A-s=(13 i19=C1 2D

B Scalar Multiplication (also called "scalar product" *.)

cCA = (cal-j),where c is a constant number (NOT a matrix)

Az(é AZL) 3‘4:3(; i)=(g 162)

Kie




Matrix Operation - Multiplication (Intuitive)

C11

A (Row) Z (Row)
C12
7| |8
= R ()
11, (12
€21

Coo MUST be same!

AB = C = ( W A\mxg X Bql)xp/
G G

An () (D)

31




Matrix Operation - Multiplication (Math Notation)

Amxn BTlXP

n

AB = (c¢j) such that cy, = Z a;j X bjk

f\

j=1
1 2 3 7 8
A2><3 = (4 5 6) ngz = 9 10
11 12
. _ _/
_(1 2 3 _( €11 C12
AB_(4 5 6)<191 1;))_(021 sz)
3
C1=Zaj><bj1=a1)(b11 +a2><b21 +a3><b31
J=1 = 1x7 4+ 2x9 +  3x11 =
3
CZ:Zanbj2=a1Xb12 +a2Xb22 +a3><b32
I = 1x8 + 2x10 + 3x12 =
3
Clzzanbjlzalxbll +a2Xb21 +a3Xb31
I = 4x7 + 5x9 + 6x11 =
3
C2=zaj><bj2=a1)(b12 +a2><b22 +a3Xb32
It = 4x8 + 5x10 + 6x12 =

32




Matrix Operation - Properties

B Properties in Matrix Operations

A+B=B+A
A(B+ C)=AB + BC
(A+B)T = AT + BT
A(BC) = (AB)C
AN = A

(AB)T = BT AT

33




Types of Matrix Operation

H Finally, we want to know this

Yet, still hard to understand 1T

3u

Input

@

hidden #1

® ® &
T
/”’-!_"‘\\
S .S %
3 N R
S 5
3 N R
S~ —

First, check how to compute!
- Linear Equation using Inverse Matrix
* Determinant

- Inverse Matrix




Inverse Matrix on System of Linear Equations

In System of Linear Equations AX = B

If Inverse matrix A~1 of A exists,

X=A"'B How to check it out?*=
1 2\/X\ _ (6
(1 _3) (y) ) (1) If A1 exists??
—1 W heck it by usi
SR I

YES!

No solution or infinitely many solutions.
A unique solution exists.

K1)




Determinant - Definition & Notation

Bl Determinant In fact, determinants have even

- ooz A 3A 02t B E deeper meanings.
- A function maps Square Matrix into a scalar We will learn them step by step. A#
A11 - Qin determinant
: " : Real value
An1  *° Qnn

f(Square Matrix) = R

Representation in Linear Algebra "

detA or |A|

3b




Determinant - Operations

Rt
=

The matrix obtained

Don't worry...
The computer does the calculations.
Just focus on understanding

the concept. **

Computing Determinant !!

0x0—-det(d) =0

by removing the i-th

1Xx1—-det(a) =a < Only one value exists

row and j-th column

a1 Qg9 Y from the original
2 X 2 - det (a a ) = allazz - a12a21
21 22 matrix.
11 M2 M3\ = ayy|Myy| — a1p|Map [+ a13Mas
3X 3 ->det| a1 a2 azs
a a a Az, dz3 az1 dzs Az Az
31 32 33 = aqq 12 + aq3
Az, d3z3 azq1 dszz azq1 dszp
i1 A2 Q13 Qg4
A1 AQAzp A0Az3 Ay
4 X 4 — det a a a a = a1 My — ay; My + ay3My3 — agaMyy
31 32 33 34
Ag1 Agp Ay3  Ayq
[ ] [ ) [ ]

31




Computing the Inverse Matrix

'Cofactor (O Q1) 2t £ &
Of| A

24
=
(i G2 Moot

SRR

CZl L.
A‘1=m<c&2 2z ) where C;; = (=1)") x

AX =1 We call it as 'Adjoint Matrix'
ai1 a2 A1n Ci1 Cy Cna
a1 0z Arn 1 Ciz Cyy Cn2
t | detd|
an1 an2 an3 Ann Cln CZn Cnn
detd 0 0 10 0
_ 1 0 detd o | _(0 1 U
det A : " : S N
0 0 - detd 0o 0 - 1

The inverse matrix also satisfies Y 1
the commutative property. A AAT" =A""A=1

38




Toy Example

Solving Linear System using Inverse Matrix YA 9
Toy Example determinant
_1 1 1. FAL a thing that controls or influences what happens
A_l = (Cl b) = ( d _b) 2. HA} often + of
c d —c a

AX =B (1 2 )(x) _ (6) If inverse matrix exist: ad — bc # 0
by ! (Non-zero determinant exist)

Multiply A~1 on the right side of both sides..

A"TAX = A™'B 1__31_2,1@ G D6)= —=C D6

Just simply re-arrange equations
— 1,3 —
x=478 (; )G)=-5C DO

Y = A-1B (;) _ _%(—_168_;12) _ _1(—20) _ (4)

39




H What!!!
- Hey prof! Too complex T

- Do we must know this?

- Yes!!
- However, we dont need to compute in hand "

- We will use Python package "numpy"

However, you must understand

how it works!!!

import numpy as np

matrix = np.array([[2, 5], [1, 3]])
matrix_det = np.linalg.det(matrix)
print(matrix_det)

>>> 1.0

matrix_inverse
print(matrix_inverse)
>>> [[ 3. -5]

[-1. 2.]]

np.linalg.inv(matrix) # inverse matrix(S

#2x2 HE MM
# determinant AlAt

=
# 21 =9

=5

= Al-

L—

) A

Lo




Dependent vs. Independent

B Linear Combination (1 =g}
- For vectors b; and b,,
- and real numbers a; and a,, the expression

- a,;b; + a,b, is called a linear combination of b; and b,

B Linearly Dependent
- A set of vectors vy, ..., v is linearly dependent
- if there eixist non-zero scalars a4, ..., a; such that
a vy + -+ agv, =0
B Linearly Independent
- If the equation

n
a;v; = 0
i=1

holds only whena; = --- =a, =0

L1
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Tensor in Pysics

Y v =S HiekE HEoM

EH Off A

3

<0

!

52 b2}

jol

z =0 O/X[=

jol

x =00 0| X[ =

~
N N N
~
&
— S X
- @ NEANNEQINEy
Jd
R 2 R R
o B & Nalty
Kir @ SN———
N
3 I
I o
Ty
\
\
\
\
\
\
4

jol

z =0 O[X| =

jol
4

x =0f OJX|

fol
[N

y =0 O[]

z =0 B[X|=

jol
A

x =0{ O] K|

ol

y =0f 0[X|=

(G @& ()
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Tensor in Pysics - Extension &

ER=- P Y]

Rank: 72| |IA~=0| Zt= Basis =

1o

Rank 2 o|O|< Ct2X| ot
<74 O = Matrix2 22 2 A
txx txy txz
Tox tZy 122
Jijk
/ txxy txyy txzy
txxx txyx txe yzy
L row index tyxx t)’)’x tyzx zzy 66“1‘ txxy ’fxyy
Pree Tayx 72X o Tyxy  tyyy
. o P
J: column index ¥ y  Tzyy

ol FHE £ 5 2y




Let's use Tensor in ML
Yes!

O| M| = matrix ECt & H2|st
A= ZEZ Tensorg A T AL

15 ]
39
a7
55
a

2 ] =+

U5




Deeplearning Tensor

0= A &=L,

ot A2

S| Of5f

e

AHA! TensorES

i 291
ol 0|

=n O

ZHEHSEA| %
Scalar, Vec

mSl0|g}

 LICE.

HH O
— d

| HO|H Atz =7 2R

b CFXHE

—
o
—

L| C}.

S

List, Tuple, Set, Dictionary2} &=
S
[—]

=
-

PythonOll A | 23}
NEEES S INE nPYE]
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Tensor Simple Understanding < Computer Science Version!

2 (entry) S EOLY| ?{ol 2R 7| X (basis)2| =
y

Rank

x12)) 0 1 2 io 4 5
Name ' scalar| vector —matrix 3D 4D 5D
(83) tensor tensor tensor

(]
Visualization
(Al Zteh

\

|

We know these Need more
data structure

iy




Tensor Example in Dataset

B Tensors

- A tensor is an n-dimensional array of scalars.

- Vector: 1D tensor, v € R"
- Matrix: 2D tensor, A € R™*"

+ 4D tensor: T € R™M1*N2XM3XNy

B An RGB image
- 3D array, making it a 3D tensor.

- The three axes correspond to width, height, and channels

©e.g., 224x224x%3

- The channel axis corresponds to the color channels

- red, green, and blue

L8




Tensor Operation in Deeplearning

In fact, a Tensor is a multi-dimensional array, allowing numerous operations.

It varies depending on which dimension or axis is used as the reference .

Ultimately, it must be broken down to enable Matrix, Vector, and Scalar operations.

Let's explore methods for decomposing a Tensor ~*,

Move to next slide~~

uq




Tensor Decomposition

Fiber decomposition
1702 QIElA = Xt 7S A
LIHA| QA= R & 7Y

280 et CF et
(a) Mode-1 (column) fibers: x5 (b) Mode-2 (row) fibers: x4 b - Vector”/ |' AoH )8 %!

Fig. 2.1 Fibers of a 3rd-order tensor.

Slice decomposition

LIHA| Q9 As B A0

A-0| ot Crkst
Matrix7F 44 d =l

(a) Horizontal slices: X;.. (b) Lateral slices: X.;: (¢) Frontal slices: X..; (or X3)

O 510i| Ctfet Y- E 7ts

—

Fig. 2.2 Slices of a 3rd-order tensor.

Ueltschi, T. W. "Third-Order Tensor Decompositions and Their Application in Quantum Chemistry." Pexum goctyna:
http://buzzard.pugetsound.edu/courses/2014spring/420projects/math420-UPS-spring-2014-ueltschi-tensors-in-chemistry.pdf (2014).
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http://buzzard.pugetsound.edu/courses/2014spring/420projects/math420-UPS-spring-2014-ueltschi-tensors-in-chemistry.pdf
http://buzzard.pugetsound.edu/courses/2014spring/420projects/math420-UPS-spring-2014-ueltschi-tensors-in-chemistry.pdf
http://buzzard.pugetsound.edu/courses/2014spring/420projects/math420-UPS-spring-2014-ueltschi-tensors-in-chemistry.pdf

Operation in Deeplearning: Matrix X Tensor (1-mode fiber)

Asxa

J—

2

3
@ 1-mode fiber

-

51
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Operation in Deeplearning: Tensor (2-mode fiber) X Matrix

S [/

4 X

2

3
@ 2-mode fiber

—1| X

A3zxs

52

.
![f-F-F-F L

72
/i

!

Shape (size)
(4%x3x%x2)Xx(3X%X5)

= (4X5X2)




Operation in Deeplearning: Vector X Tensor (1-mode fiber)

r.--".

Vector: Vi, X A %
y
y 7 I
RN | [
2
( J

3
@ 1-mode fiber ;
y N2 AL £
4
14
L J X
Y
4 B
e
\ v ;
3
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Operation in Deeplearning: Tensor (slice) X Matrix

3

Horizontal Slice (i;;)

2X5

2

54
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hidden #1  hidden #2  hidden #3
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Operation in Deeplearning: Tensor(2-mode fiber) X Vector

hidden #1  hidden #2 hidden #3 {: A i hidden #k
. Input 1 2 3 S T i 0

WT . X: Deeplearning Structure Oy Oy C '; L\ oumu
(It varies according to implementation) @
OACNING ®

X vector: v : ) N :

2 4x1 @ )
R =wX+b  h*=WS R¥ = wl ¥t + b,

2-mode fiber

e

!/

—_

—

24 FIBEY ()
4 _ _1’ \ !L ;

—

‘ %

( J

—_—
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Derjvative



Derivative in ML

Definition of derivative

- The derivative of the function f: R — R is defined as follows.

d h) —
P = L p = im [EHD 1@

- If the limit value of f'(a) exists, then ffis differentiable at a.
- If f'(c) exists for all c€[a,b], then f is differentiable on this interval.

- The derivative f'(x) can also be interpreted as the instantaneous rate of change of f(x)

with respect to x.

d : .
- The symbols e D, and Dx represent differentiation operators.

- If x is the independent variable and y is the dependent variable, given y=f(x)

* then the following expressions are equivalent:

N dy df d _ _
o) = f' =22 === == f(0) = Df () = Def ()

51

57




Frequently used Differential Equations

Apztol cht oj L =0
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270 tigho0i= Eln glx) = g~

_ _ d d d
i o=l et 0|2 —{el(x 1) =— —
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_ _ d d Y. (d \
x| ot O — S Ay = A — il ; 5
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Higher Order Derivatives

B The second derivative quantifies

the rate of change of the rate of change of f(x).

B For example, in physics,
- If a function represents an object's displacement

- The first derivative represents velocity, which is the rate of change of position.

- The second derivative represents acceleration, which is the rate of change of velocity.
B The n-th derivative of f(x) is expressed as follows:
dif  (d\"
fWE) =—= = f(x)

dx™ dx
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Partial Derivatives

B A function where multiple variables make up the domain (f: R" - R)

A function y = f(X) = f(x1,x3, ..., X,) with n variables is called a multivariable
function.

- Input: n-dimensional vector: x = [x; X5 ....x,]T

- Output: is a scalar y.

The partial derivative of y with respect to the i-th parameter x; is given by:

ay ) f(xlle!"'fxi-I_h"“txn)_f(x1'x2r'"'xi""rxn)
— = lim
axi n—oo h

&1 gy partial y2td =Lt

dy
To compute

oxy treat x1, x5, "+, X{_1, Xj+1, "'+, Xy @s constants and differentiate y only

respect to x;

dy of
axi Xi

All same representation in partial derivative:

= 2 f(O) = fi, = Dif
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Gradient

B Gradient

- The gradient of a multivariable function f(x) with respect to an n-dimensional input
vector
X=[x; x5 o]’

is defined as a vector composed of partial derivatives, as follows:

of(X) fX) O]

0xq dx, 0x,

Vi(x) =

Gradiente= J2|A X VE H7|St1 "nabla (LIE2hH"E 22 LY

Vf(x) is referred to as "the gradient of f with respect to the vector X."

bl




Optimization in ML

B Objectives such as minimizing the difference
- between predicted and actual values
(or maximizing classification accuracy)

B The function is called the Objective Function.

B Through the optimization process,
- ML model searches for parameter values that achieve the desired objective function.
B In minimization problems,
- the objective function is referred to as Loss Function, Cost Function, or Error Function.

B Goal of ML

- tind the model parameters
- that achieve the optimal objective function value

- based on the given training data.

b2
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Global Minimum vs. Local Minimum

B Finding the parameter values that achieve the optimal objective function

value = extremely challenging.

- Global Minimum:

- The lowest value of the objective function f(x) across the entire range of x.

- Local Minimum:

- A point where the objective function f(x) has a smaller value than at other nearby

points within a small range of x.

bl




Minimum Points in ML

B Machine learning objective functions
- Often have multiple local minima.

- During the optimization process, gradient-based methods are used to find the

minimum value of the loss function.

- However, once the model parameters reach a local minimum, it becomes difficult to

explore other parameter values to find a potentially better global minimum.

\ /
Minimum
2 Point
2 D\CJ\/T 4
How to

Search???

b5




Critical Point (2 H| &)

B A critical point of a differentiable function f(x) of one variable is a point

where its derivative is zero:
— =0
T f(x)
B Types of Critical Points

- Minimum: A point where the derivative changes from negative to positive.

- Maximum: A point where the derivative changes from positive to negative.

- Saddle Point

- Appears as a maximum in one direction but a minimum in another direction.

Saddle Point Local Maxima

Local Minima




Example

y=1§_|1_7g,

xOf| CHSHO

differentiate

7
fx,y) = —2
e

x2+y2
,where f:R? > R

Let z = f(x,y)

xOf CHS}HO

differentiate

Source: https://hyperskill.org/learn/step/13758
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Random Variable

B A random variable is a function that maps a value from the sample space

(domain) to a real number (codomain)

B Example:
When rolling a fair die, if we define the outcome as a random variable X, then:
- Sample space: S={1,2,3,4,5,6}
- The event where the die lands on 5 is written as:
- {X=5}orsimply X=5
 The probability of this event is expressed as:

* P({X = 5}) or simply P(X = 5)

bq
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Probability Distribution

B A probability distribution is a function that assigns probabilities to all

possible values X that a random variable X can take:
P(X =x)

For simplicity, it can also be written as P(X) or P(x).

B The notation
X~Pyx(x)
indicates that the random variable X follows

the probability distribution Px(x).

0




Types of Random Variables

B Discrete Random Variables

- A random variable is discrete if its possible values are finite or countably infinite.

- Examples:
- The possible outcomes when flipping a coin once.

- The number of times a die is rolled until a "2" appears.

B Continuous Random Variables

- A random variable is continuous if its possible values are uncountable and can take an

infinite number of values.
- Examples:
* Measuring a person's height without rounding.

* Measuring a person's weight with unlimited decimal precision.

11




Axioms of Probability

B An axiom is a statement that is accepted as true without proof.
Bl Notations
- S: sample space (the set of all possible outcomes of an experiment)
- P(A): the probability of an event A occurring
B The probability function P(-) must satisfy the following axioms:
- Non-Negativity
* P(A) 20, for all events ASS (Probabilities are always non-negative real numbers.)
- Normalization
- P(S)=1 (The probability of the entire sample space is always 1.)
- Additivity
- P(A; UA;) = P(A,) + P(A;) for any mutually exclusive events A; and 4, meaning
- A NA, =0

12




Probability Mass Function (PMF) & Probability Density Function (PDF)

B Probability Mass Function (PMF)

- A function that represents the probability of discrete random variables.
- Example: If X represents the sum of two dice rolls, then:

P(X=x), x€{2, 3,..,12}

B Probability Density Function (PDF)
- A function that represents the probability of continuous random variables.
[Example]
- The probability that the height of a man in his 20s falls between 168 cm and 175 cm.

- For continuous random variables, the probability that the variable falls within an
interval [a,b] is calculated as the integral of the PDF over that range.

b
P(X € [a,b]) = j P, (x)dx

a
13




Multivariate Random Variable

B A multivariate random variable is a list of multiple random variables.

B When expressed in vector form, it is called a random vector.

X = [Xl!XZ' 'Xn]T

i




Bayes’ Theorem

B The multiplication rule for joint distributions is used.

Likelihood
(&, 7lsk) Prior probability

P(AIB) =

\

Posterior probability

(AHE 28) Evidence(3H)

T T

Marginal likelihood
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What happens in Deep Learning?
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Where is Bayes Theorem in Deep Learning?

B 20A AHSE 42S Bayes Theorem2 2 4 Z}51H?
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Expected Value

B When a random variable X follows a probability distribution P(X),
denoted as

X~P(X)

B For a Discrete Random Variable

Ex-paolf 001 = ) PGOF()

B For a Continuous Random Variable

Expoo [f (0] = f PGOF(x) dx

18




Variance

B Given a random variable X that follows a probability distribution P(X),

- the variance of a function f(X) measures how much the values of f(X) deviate from

their expected value E[f (X)].

Bl Definition

Var(f(X)) = E[(f(X) — E[f(CO)])?]

B Alternative Formula

Var(f(X)) = E[(f(X)*] — (E[f(X)])?

19
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