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Goal of Machine Translation

ො𝑦 = argmax
𝑦∈𝒴

𝑃𝑥→𝑦 𝑦|𝑥
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History of Machine Translation

https://www.freecodecamp.org/news/a-history-of-machine-translation-
from-the-cold-war-to-deep-learning-f1d335ce8b5/

2014, Evolution of NMT: 
Attention Mechanism → Seq2Seq 

Almost all modern technologies
are using NMT!!!
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■ 2016, Google announced GNMT (Google Neural Machine Translation)

- Seq2Seq + Attention + Reinforce Learning

GNMT from Google in 2016

Paper Link: 
https://arxiv.org/pd
f/1609.08144.pdf

Side-by-side (SxS) score
• Human evaluation
• Range = [0, 6]

• 6: perfect translation
• 0: nonsense

https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf
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Fully Convolutional Seq2Seq from Facebook in 2017

Paper Link: 
https://arxiv.org/pdf/1705.03122.pdf

https://arxiv.org/pdf/1705.03122.pdf


6 / 45

■ Same structure of Seq2Seq, but only Attention Mechanism

After one month of ConvS2S, Transformer comes!

Paper Link: 
https://arxiv.org/pdf/
1706.03762.pdf

Now, everything is
Transformers!

https://scholar.google.com/scholar?hl=ko&as
_sdt=0%2C5&q=attention+is+all+you+need 

Please, click &
check it out!

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://scholar.google.com/scholar?hl=ko&as_sdt=0%2C5&q=attention+is+all+you+need
https://scholar.google.com/scholar?hl=ko&as_sdt=0%2C5&q=attention+is+all+you+need
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■ Beautiful Sources

- Blog: Jay Alammar

■ Paper Link

- https://arxiv.org/abs/1706.03762

References

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
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Overview
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Transformer: Attention only Mechanisim
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■ Transformer (Vaswani et al., 2017, Google)

- A model that uses attention to boost the speed with which these models can be trained and 

easy to parallelize

Overview
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■ A model that uses attention to boost the speed with which these models can be 

trained and easy to parallelize

■ A high level look

■ Inside the transformer, there are an encoding component and a decoding 

components and connections between them

High Level View
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■ Stack of encoders & decoders

- The original paper stacks six of them on top of each other, but there is nothing magical about 

the number six

- The decoding component is a stack of decoders of the same number

Encoder-decoder Stacking Structure
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■ Encoding block vs. Decoding block == Unmasked vs. Masked

Difference between Encoder & Decoder



14 / 45

■ The encoder are all identical in structure (does not mean that they share the 

weights), each of which is broken down into two sub-layers

- The encoder’s input first flow through a self-attention layer(a layer that helps the encoder 

look at other words in the input sentence as it encodes a specific word)

- The output of the self-attention layer are fed to a feed-forward neural network

 The exact same feed-forward network is independently applied to each position

Encoder Structure
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■ The decoder has both those layers, but between them is an attention layer that helps 

the decoder focus on relevant parts of the input sentence

Decoder Structure
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Input Embedding
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■ Embedding

Input Embedding
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■ More specific explanation

- Let's begin by turning each input word into a vector using an embedding algorithm

 The embedding only happens in the bottom-most encoder

 The abstraction that is common to all the encoders is that they receive a list of vectors 

each of the size 512

 In the bottom encoder that would be the word embeddings, but in other encoders, it 

would be the output of the encoder that is directly below

 The size of this list is a hyperparameter we can set – basically it would be the length of 

the longest sentence in our training dataset

Input Embedding
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■ A way to account for the order of the words in the input sequence

■ A vector added to each input embedding

- Provides meaningful distances between the embedding vectors once they are projected into 

Q/K/V vectors and during dot-product attention

Positional Encoding
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Positional Encoding

Data Source: https://nlp.seas.harvard.edu/2018/04/03/attention.html 

https://nlp.seas.harvard.edu/2018/04/03/attention.html
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■ Two properties that a good positional encoding scheme should have

- The norm of encoding vector is the same for all positions

- The further the two positions, the larger the distance

 A Simple Example (n = 10, dim = 10)

Positional Encoding - Required Properties

Distances between two positional encoding vectors
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Self Attentions
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■ Area of Self-attention

Self-attention
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■ After embedding the words, each of them flows through each of the two layers of the 

encoder

- Word in each position flows through its own path in the encoder

 There are dependencies between these paths in the self-attention layer

 The feed-forward layer does not have those dependencies (parallelization becomes 

possible)

Layers
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■ An encoder receives a list of vectors as input

■ It processes this list by passing these vectors into a ‘self-attention’ layer, then into a 

feed-forward neural network, then sends out the output upwards to the next 

encoder

Encoding Procedure
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■ Input sentence to translate: 

The animal did’t cross the street because it was too tired

- What does “it” refer to?  street or animal?

- Simple question to a human but not as simple to an algorithm

■ Self attention allows it to look at other positions in the input sequence for clues that 

can help lead to a better encoding for this word

■ Self-attention is the method the Transformer uses to bake the “understanding” of 

other relevant words into the one we’re currently processing

Self-Attention at a High Level



27 / 45

Self-Attention example

Source codes: 
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/ma
ster/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=OJKU36QAfqOC

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=OJKU36QAfqOC
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=OJKU36QAfqOC
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■ Step 1: Create three vectors from each of the encoder’s input vectors

- Query: The query is a representation of the current word used to score against all the other 

words (using their keys). We only care about the query of the token we’re currently 

processing.

- Key: Key vectors are like labels for all the words in the segment. They’re what we match 

against in our search for relevant words.

- Value: Value vectors are actual word representations, once we’ve scored how relevant each 

word is, these are the values we add up to represent the current word.

Self-Attention - Step 1
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■ Step 1: Create three vectors from each of the encoder’s input vectors

- These vectors are created by multiplying the embedding by three matrices that we trained 

during the training process

Self-Attention - Step 1 (cont.)
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■ Step 1: Create three vectors from each of the encoder’s input vectors

- Note) These new vectors are smaller in dimension that the embedding vector

 Q, K, and V are 64-dim. while embedding and encoder input/output vectors are 512-dim.

 They do not have to be smaller, but it is an architecture choice to make the computation 

of multi-headed attention (mostly) constant

Self-Attention - Step 1 (cont.)
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■ Step 2: Calculate a score, i.e., how much focus to place on other parts of the input 

sentence as we encode a word at a certain position

- The score is calculated by taking the dot product of the query vector with the key vector of 

the respective word we are scoring

Self-Attention - Step 2
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■ Step 3: Divide the score by   𝑑𝑘 (= 8 in the original paper since 𝑑𝑘= 64)

- This leads to having more stable gradients

■ Step 4: Pass the result through a softmax operation

- The softmax score determines how much each word will be expressed at this position

Self-Attention - Step 3, 4
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■ Step 5: Multiply each value vector by the softmax score 

- to keep intact the values of the 

words we want to focus on

- drown-out irrelevant words

Self-Attention - Step 5
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■ Step 6: Sum up the weighted value vector which produces the output of the self-

attention layer at this position

Self-Attention - Step 6
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Matrix Calculations of self-attention
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Multi-head Attentions
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■ Expand the model’s ability to focus on different positions

Multi-head Attention
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■ Attention heads are concatenated and multiplied by an additional weight matrix to be 

used as an input of feed-forward neural network

Multi-head Attention
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Multi-head Attention
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Multi-head Attention

Attention with two heads                                 Attention with eight heads
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Residual Connections
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■ Each sub-layer (self-attention, FFNN) in each encoder has a residual connection 

around it followed by a layer-normalization step

Residual Connections
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■ This goes for the sub-layers of the decoder as well

- Ex: 2 stacked encoders and decoders

Residual Connections
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Position-wise FF Networks
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Position-wise FF Networks

Position-wise Feed-Forward Networks
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■ Position-wise Feed-Forward Networks

- Fully connected feed-forward network

- Applied to each position separately and 

identically

𝐹𝐹𝑁 𝑥 = max 0, 𝑥𝑊1 + 𝑏1 𝑊2 + 𝑏2

- The linear transformations are the same 

across different positions

- They use different parameters from layer 

to layer

Position-wise FF Networks
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Masked Multi-head Attention
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Masked Multi-head Attention

Masked Multi-Head Attention 
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■ Self attention layers in the decoder is only allowed to attend to earlier positions in 

the output sequence, which is done by masking future positions (setting them to –inf) 

before the softmax step in the self attention calculation.

Masked Multi-head Attention
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Masked Multi-head Attention
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■ Do not need to be done sequentially, but can be done at one batch

Masked Multi-head Attention
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Masked Multi-head Attention
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Combining Encoder & Decoder
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■ The encoder start by processing the input sequence. 

■ The output of the top encoder is then transformed into a set of attention vectors K and V. 

■ These are to be used by each decoder in its “encoder-decoder attention” layer which helps the 

decoder focus on appropriate places in the input sequence:

Combining Encoder & Decoder
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■ Repeat the process until a special symbol is reached indicating decoder has 

completed its output. 

■ The output of each step is fed to the bottom decoder in the next time step
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Final Linear & Softmax Layer
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Final Linear & Softmax Layer

The Final Linear and 

Softmax Layer
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■ Linear layer

- a simple fully connected neural 

network that projects the vector 

produced by the stack of decoders 

into a much larger vector called a 

logits vector

■ Softmax layer

- turns those scores into probability

- The cell with the highest probability is 

chosen, the word associated with it is 

produced as the output of this time 

step

Final Linear & Softmax Layer
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