
kafa46@hongik.ac.kr

노기섭 교수

(kafa46@hongik.ac.kr)

Transformer

mailto:kafa46@hongik.ac.kr

2 / 45

Goal of Machine Translation

ො𝑦 = argmax
𝑦∈𝒴

𝑃𝑥→𝑦 𝑦|𝑥

3 / 45

History of Machine Translation

https://www.freecodecamp.org/news/a-history-of-machine-translation-
from-the-cold-war-to-deep-learning-f1d335ce8b5/

2014, Evolution of NMT:
Attention Mechanism → Seq2Seq

Almost all modern technologies
are using NMT!!!

https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/
https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/

4 / 45

■ 2016, Google announced GNMT (Google Neural Machine Translation)

- Seq2Seq + Attention + Reinforce Learning

GNMT from Google in 2016

Paper Link:
https://arxiv.org/pd
f/1609.08144.pdf

Side-by-side (SxS) score
• Human evaluation
• Range = [0, 6]

• 6: perfect translation
• 0: nonsense

https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf

5 / 45

Fully Convolutional Seq2Seq from Facebook in 2017

Paper Link:
https://arxiv.org/pdf/1705.03122.pdf

https://arxiv.org/pdf/1705.03122.pdf

6 / 45

■ Same structure of Seq2Seq, but only Attention Mechanism

After one month of ConvS2S, Transformer comes!

Paper Link:
https://arxiv.org/pdf/
1706.03762.pdf

Now, everything is
Transformers!

https://scholar.google.com/scholar?hl=ko&as
_sdt=0%2C5&q=attention+is+all+you+need

Please, click &
check it out!

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://scholar.google.com/scholar?hl=ko&as_sdt=0%2C5&q=attention+is+all+you+need
https://scholar.google.com/scholar?hl=ko&as_sdt=0%2C5&q=attention+is+all+you+need

7 / 45

■ Beautiful Sources

- Blog: Jay Alammar

■ Paper Link

- https://arxiv.org/abs/1706.03762

References

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

8 / 45

Overview

9 / 45

Transformer: Attention only Mechanisim

10 / 45

■ Transformer (Vaswani et al., 2017, Google)

- A model that uses attention to boost the speed with which these models can be trained and

easy to parallelize

Overview

11 / 45

■ A model that uses attention to boost the speed with which these models can be

trained and easy to parallelize

■ A high level look

■ Inside the transformer, there are an encoding component and a decoding

components and connections between them

High Level View

12 / 45

■ Stack of encoders & decoders

- The original paper stacks six of them on top of each other, but there is nothing magical about

the number six

- The decoding component is a stack of decoders of the same number

Encoder-decoder Stacking Structure

13 / 45

■ Encoding block vs. Decoding block == Unmasked vs. Masked

Difference between Encoder & Decoder

14 / 45

■ The encoder are all identical in structure (does not mean that they share the

weights), each of which is broken down into two sub-layers

- The encoder’s input first flow through a self-attention layer(a layer that helps the encoder

look at other words in the input sentence as it encodes a specific word)

- The output of the self-attention layer are fed to a feed-forward neural network

 The exact same feed-forward network is independently applied to each position

Encoder Structure

15 / 45

■ The decoder has both those layers, but between them is an attention layer that helps

the decoder focus on relevant parts of the input sentence

Decoder Structure

16 / 45

Input Embedding

17 / 45

■ Embedding

Input Embedding

18 / 45

■ More specific explanation

- Let's begin by turning each input word into a vector using an embedding algorithm

 The embedding only happens in the bottom-most encoder

 The abstraction that is common to all the encoders is that they receive a list of vectors

each of the size 512

 In the bottom encoder that would be the word embeddings, but in other encoders, it

would be the output of the encoder that is directly below

 The size of this list is a hyperparameter we can set – basically it would be the length of

the longest sentence in our training dataset

Input Embedding

19 / 45

■ A way to account for the order of the words in the input sequence

■ A vector added to each input embedding

- Provides meaningful distances between the embedding vectors once they are projected into

Q/K/V vectors and during dot-product attention

Positional Encoding

20 / 45

Positional Encoding

Data Source: https://nlp.seas.harvard.edu/2018/04/03/attention.html

https://nlp.seas.harvard.edu/2018/04/03/attention.html

21 / 45

■ Two properties that a good positional encoding scheme should have

- The norm of encoding vector is the same for all positions

- The further the two positions, the larger the distance

 A Simple Example (n = 10, dim = 10)

Positional Encoding - Required Properties

Distances between two positional encoding vectors

22 / 45

Self Attentions

23 / 45

■ Area of Self-attention

Self-attention

24 / 45

■ After embedding the words, each of them flows through each of the two layers of the

encoder

- Word in each position flows through its own path in the encoder

 There are dependencies between these paths in the self-attention layer

 The feed-forward layer does not have those dependencies (parallelization becomes

possible)

Layers

25 / 45

■ An encoder receives a list of vectors as input

■ It processes this list by passing these vectors into a ‘self-attention’ layer, then into a

feed-forward neural network, then sends out the output upwards to the next

encoder

Encoding Procedure

26 / 45

■ Input sentence to translate:

The animal did’t cross the street because it was too tired

- What does “it” refer to? street or animal?

- Simple question to a human but not as simple to an algorithm

■ Self attention allows it to look at other positions in the input sequence for clues that

can help lead to a better encoding for this word

■ Self-attention is the method the Transformer uses to bake the “understanding” of

other relevant words into the one we’re currently processing

Self-Attention at a High Level

27 / 45

Self-Attention example

Source codes:
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/ma
ster/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=OJKU36QAfqOC

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=OJKU36QAfqOC
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=OJKU36QAfqOC

28 / 45

■ Step 1: Create three vectors from each of the encoder’s input vectors

- Query: The query is a representation of the current word used to score against all the other

words (using their keys). We only care about the query of the token we’re currently

processing.

- Key: Key vectors are like labels for all the words in the segment. They’re what we match

against in our search for relevant words.

- Value: Value vectors are actual word representations, once we’ve scored how relevant each

word is, these are the values we add up to represent the current word.

Self-Attention - Step 1

29 / 45

■ Step 1: Create three vectors from each of the encoder’s input vectors

- These vectors are created by multiplying the embedding by three matrices that we trained

during the training process

Self-Attention - Step 1 (cont.)

30 / 45

■ Step 1: Create three vectors from each of the encoder’s input vectors

- Note) These new vectors are smaller in dimension that the embedding vector

 Q, K, and V are 64-dim. while embedding and encoder input/output vectors are 512-dim.

 They do not have to be smaller, but it is an architecture choice to make the computation

of multi-headed attention (mostly) constant

Self-Attention - Step 1 (cont.)

31 / 45

■ Step 2: Calculate a score, i.e., how much focus to place on other parts of the input

sentence as we encode a word at a certain position

- The score is calculated by taking the dot product of the query vector with the key vector of

the respective word we are scoring

Self-Attention - Step 2

32 / 45

■ Step 3: Divide the score by 𝑑𝑘 (= 8 in the original paper since 𝑑𝑘= 64)

- This leads to having more stable gradients

■ Step 4: Pass the result through a softmax operation

- The softmax score determines how much each word will be expressed at this position

Self-Attention - Step 3, 4

33 / 45

■ Step 5: Multiply each value vector by the softmax score

- to keep intact the values of the

words we want to focus on

- drown-out irrelevant words

Self-Attention - Step 5

34 / 45

■ Step 6: Sum up the weighted value vector which produces the output of the self-

attention layer at this position

Self-Attention - Step 6

35 / 45

Matrix Calculations of self-attention

36 / 45

Multi-head Attentions

37 / 45

■ Expand the model’s ability to focus on different positions

Multi-head Attention

38 / 45

■ Attention heads are concatenated and multiplied by an additional weight matrix to be

used as an input of feed-forward neural network

Multi-head Attention

39 / 45

Multi-head Attention

40 / 45

Multi-head Attention

Attention with two heads Attention with eight heads

41 / 45

Residual Connections

42 / 45

■ Each sub-layer (self-attention, FFNN) in each encoder has a residual connection

around it followed by a layer-normalization step

Residual Connections

43 / 45

■ This goes for the sub-layers of the decoder as well

- Ex: 2 stacked encoders and decoders

Residual Connections

44 / 45

Position-wise FF Networks

45 / 45

Position-wise FF Networks

Position-wise Feed-Forward Networks

46 / 45

■ Position-wise Feed-Forward Networks

- Fully connected feed-forward network

- Applied to each position separately and

identically

𝐹𝐹𝑁 𝑥 = max 0, 𝑥𝑊1 + 𝑏1 𝑊2 + 𝑏2

- The linear transformations are the same

across different positions

- They use different parameters from layer

to layer

Position-wise FF Networks

47 / 45

Masked Multi-head Attention

48 / 45

Masked Multi-head Attention

Masked Multi-Head Attention

49 / 45

■ Self attention layers in the decoder is only allowed to attend to earlier positions in

the output sequence, which is done by masking future positions (setting them to –inf)

before the softmax step in the self attention calculation.

Masked Multi-head Attention

50 / 45

Masked Multi-head Attention

51 / 45

■ Do not need to be done sequentially, but can be done at one batch

Masked Multi-head Attention

52 / 45

Masked Multi-head Attention

53 / 45

Combining Encoder & Decoder

54 / 45

■ The encoder start by processing the input sequence.

■ The output of the top encoder is then transformed into a set of attention vectors K and V.

■ These are to be used by each decoder in its “encoder-decoder attention” layer which helps the

decoder focus on appropriate places in the input sequence:

Combining Encoder & Decoder

55 / 45

■ Repeat the process until a special symbol is reached indicating decoder has

completed its output.

■ The output of each step is fed to the bottom decoder in the next time step

56 / 45

Final Linear & Softmax Layer

57 / 45

Final Linear & Softmax Layer

The Final Linear and

Softmax Layer

58 / 45

■ Linear layer

- a simple fully connected neural

network that projects the vector

produced by the stack of decoders

into a much larger vector called a

logits vector

■ Softmax layer

- turns those scores into probability

- The cell with the highest probability is

chosen, the word associated with it is

produced as the output of this time

step

Final Linear & Softmax Layer

수고하셨습니다 ..^^..

	슬라이드 1: Transformer
	슬라이드 2: Goal of Machine Translation
	슬라이드 3: History of Machine Translation
	슬라이드 4: GNMT from Google in 2016
	슬라이드 5: Fully Convolutional Seq2Seq from Facebook in 2017
	슬라이드 6: After one month of ConvS2S, Transformer comes!
	슬라이드 7: References
	슬라이드 8: Overview
	슬라이드 9: Transformer: Attention only Mechanisim
	슬라이드 10: Overview
	슬라이드 11: High Level View
	슬라이드 12: Encoder-decoder Stacking Structure
	슬라이드 13: Difference between Encoder & Decoder
	슬라이드 14: Encoder Structure
	슬라이드 15: Decoder Structure
	슬라이드 16: Input Embedding
	슬라이드 17: Input Embedding
	슬라이드 18: Input Embedding
	슬라이드 19: Positional Encoding
	슬라이드 20: Positional Encoding
	슬라이드 21: Positional Encoding - Required Properties
	슬라이드 22: Self Attentions
	슬라이드 23: Self-attention
	슬라이드 24: Layers
	슬라이드 25: Encoding Procedure
	슬라이드 26: Self-Attention at a High Level
	슬라이드 27: Self-Attention example
	슬라이드 28: Self-Attention - Step 1
	슬라이드 29: Self-Attention - Step 1 (cont.)
	슬라이드 30: Self-Attention - Step 1 (cont.)
	슬라이드 31: Self-Attention - Step 2
	슬라이드 32: Self-Attention - Step 3, 4
	슬라이드 33: Self-Attention - Step 5
	슬라이드 34: Self-Attention - Step 6
	슬라이드 35: Matrix Calculations of self-attention
	슬라이드 36: Multi-head Attentions
	슬라이드 37: Multi-head Attention
	슬라이드 38: Multi-head Attention
	슬라이드 39: Multi-head Attention
	슬라이드 40: Multi-head Attention
	슬라이드 41: Residual Connections
	슬라이드 42: Residual Connections
	슬라이드 43: Residual Connections
	슬라이드 44: Position-wise FF Networks
	슬라이드 45: Position-wise FF Networks
	슬라이드 46: Position-wise FF Networks
	슬라이드 47: Masked Multi-head Attention
	슬라이드 48: Masked Multi-head Attention
	슬라이드 49: Masked Multi-head Attention
	슬라이드 50: Masked Multi-head Attention
	슬라이드 51: Masked Multi-head Attention
	슬라이드 52: Masked Multi-head Attention
	슬라이드 53: Combining Encoder & Decoder
	슬라이드 54: Combining Encoder & Decoder
	슬라이드 55
	슬라이드 56: Final Linear & Softmax Layer
	슬라이드 57: Final Linear & Softmax Layer
	슬라이드 58: Final Linear & Softmax Layer
	슬라이드 59

