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Goal of Machine Translation

y = argmax Py, (y]x)
YEY
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History of Machine Translation

A BRIEF HISTORY OF MACHINE TRANSLATION

RBMT EBMT SHT

RULE-BASED MACHINE TRANSLATION rj

i % 4 o
1950 1980 1990 2015
Almost all modern technologies 2014, Evolution of NMT:

- I
are using NMT!!! Attention Mechanism > Seqg2Seq

STATISTICAL MACHINE
TRANSLATION

https://www.freecodecamp.org/news/a-history-of-machine-translation-
from-the-cold-war-to-deep-learning-f1d335ce8b5/
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GNMT from Google in 2016

B 2016, Google announced GNMT (Google Neural Machine Translation)

Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi
yonghui,schuster,zhifengc,qvl,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, f.ukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
- SquSeq + Atte George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,

Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean E?t%esf /;;?)I:i:v.orq /od
£/1609.08144.pdf
Side-by-side (SxS) score Table 10: Mean of side-by-side scores on production data
« Human evaluation PBMT GNMT Human Relative
« Range = [0, 6] Improvement
« 6: perfect translation English — Spanish  4.885  5.428  5.504 87%
e 0O nonsense English — French 4.932 5.295 5.496 64%
English — Chinese  4.035 4.594 4.987 58%
Spanish — English ~ 4.872  5.187 5.372 63%
French — English ~ 5.046 5343  5.404 83%
Chinese — English  3.694 4.263 4.636 60%

<+ / <4J



https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf

Fully Convolutional Seq2Seq from Facebook in 2017

<p> They agree </s> <p>

Embeddings | H H —
Convolutions
https://arxiv.org/pdf/1705.03122.pdf
Gated
Linear
Units

Adtention ﬂ WMT’14 English-German BLEU
_,® Luong et al. (2015) LSTM (Word 50K) 20.9
>® Kalchbrenner et al. (2016) ByteNet (Char) 23.75
"2 Wu et al. (2016) GNMT (Word 80K) 23.12
Dot products Wu et al. (2016) GNMT (Word pieces) 24.61
L [ [ [ | ConvS2S (BPE 40K) 25.16

Y Y Y Y

L T [ T B [ T T ]

WMT’14 English-French BLEU
X X Wu et al. (2016) GNMT (Word 80K) 37.90
Wu et al. (2016) GNMT (Word pieces) 38.95
. . Wu et al. (2016) GNMT (Word pieces) + RL 39.92
ConvS2S (BPE 40K) 40.51

Y A J Y A J

L H H H H H | N N N R

<p> <p> <S> Sie stimmen zu Sie stimmen zu </s>
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After one month of ConvS2S, Transformer comes!

B Same structure of Seqg2Seq, but only Attention Mechanism

= Go g|E Sr=d4 attention is all you need ﬂ

Please, click & » https://scholar.google.com/scholar?hl=ko&as
check it out! sdt=0%2C58&q=attention+is+all+you+need

_— BLEU Training Cost (FLOPs)
Paper Link: Model
https://arxiv.org/pdf/ EN-DE EN-FR EN-DE EN-FR
1706.03762.pdf \ ByteNet [18] 2375
Deep-Att + PosUnk [39] 39.2 1.0 - 1020
GNMT + RL [38] 24.6 39.92 2.3-10%  1.4.10%
ConvS2S [9] 25.16  40.46 9.6-10% 1.5.10%
5 o MoE [32] 26.03 40.56 2.0-10" 1.2.10%
Now, eve ryth INg IS Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%Y  1.1.10%
Tra nsformers! ConvS2S Ensemble [9] 2636  41.29 7.7-10Y  1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.8 2.3-10%7
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https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://scholar.google.com/scholar?hl=ko&as_sdt=0%2C5&q=attention+is+all+you+need
https://scholar.google.com/scholar?hl=ko&as_sdt=0%2C5&q=attention+is+all+you+need
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Transformer: Attention only Mechanisim

GLOVE

BERT
) TRANSFORMER _
Glove: Global Vectors for BERT: Pre-training of Deep
Word Representation by Attention Is All You Need Bidirectional
Jeffrey Pennington et al. by Ashish Vaswani et al Transformers for...

January June 12, October
2,2014 2017 1, 2018

January July 15, February
16, 2013 2016 15, 2018

WORD2VEC FASTTEXT ELMO
Word2Vec Paper by Tomas Enriching Word Vectors Deep contextualized word
Mikolov et al with Subword Information representations by

by Piotr Bojanowski et al Matthew E, Peters et al
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Overview

B Transformer (Vaswani et al., 2017, Google)
- A model that uses attention to boost the speed with which these models can be trained and

easy to parallelize

Output . i i
S obitios Scaled Dot-Product Attention Multi-Head Attention
Soft R
Llnear
MatMul 1‘
Concat
Feed A
Forward
g
(Add 8 Nom ﬁ Scaled Dot-Product JA h
ﬁ‘&d,:&,:‘o;m] Multi-Head Attentlon b
e Attention
Forward ST, N x t[ “[ 1 [
n— L ' s
N Add & Norm Linear Linear Linear
* | ~{_Add &Norm ] " S
asked
Multi-Head Multi-Head v v v
Attention Attention
San s Sy b Q K vV
] Y, \_ )
Positional o) Positional v K Q
Enceding & Encoding
Input QOutput
Embedding Embedding
Inputs Outputs
(shifted right)
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High Level View

B A model that uses attention to boost the speed with which these models can be

trained and easy to parallelize

B A high level look

% THE
TRANSFORMER
£

B Inside the transformer -

n A

components and connections between them

G N )

ENCODERS * DECODERS

\ )\ /)
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Encoder-decoder Stacking Structure

B Stack of encoders & decoders

- The original paper stacks six of them on top of each other, but there is nothing magical about

the number six

- The decoding component is a stack of decoders of the same number

| am a student

*

(, 1 )
[ ENCODER ) > [ DECODER ]
L 4
[ ENCODER ) [ DECODER ]
4 4
[ ENCODER ) [ DECODER ]
L L
's ™\ g ™\
ENCODER DECODER
- v - v
4 4
g ™\ 4 A
ENCODER DECODER
\ » \ »
L L
4 ) 4 3
ENCODER DECODER
. S \ o
. A J
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Difference between Encoder & Decoder

THE TRANSFORMER

M Encoding block vs. Decoding block == Unmasked vs. Masked

THE TRANSFORMER

Feed Forward Neural Network

Encoder-Decoder Self-Attention

-
NN\

Masked Self-Attention

N AN AN

Input

Lot

[ Feed Forward Neural Network
[ Self-Attention
robot must obey orders <e0S> <pad> <pad>
5 6 512

13 /45
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Encoder Structure

B The encoder are all identical in structure (does not mean that they share the

weights), each of which is broken down into two sub-layers

t
[ Feed Forward Neural Network ]
1 —
[ Self-Attention ]
- The t helps the encoder
look _ t : d)

- The output of the self-attention layer are fed to a feed-forward neural network

 The exact same feed-forward network is independently applied to each position
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Decoder Structure

B The decoder has both those layers, but between them is an attention layer that helps

the decoder focus on relevant parts of the input sentence

4 N
Feed Forward
t . A
F
r N ' ™
Feed Forward Encoder-Decoder Attention
. v \ v
[ e r Y
' ' ' ™
Self-Attention Self-Attention
. T . . T o
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Input Embedding
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Input Embedding

B Embedding

'8 ™y

Output
Probabilities

.
(i

Feed
Forward

Add & Norm

Multi-Head
Feed Attention
Forward I MNx
—
)
r+|NM&Nmm| Mashed
Multi-Head Multi-Head
Attention Attention
YOI TN 3 VIR I
i J \, e
Positional ®_@ Positional
Encoding A ¢ Encoding
Input Output
Embedding Embedding
Inputs Qutputs
(shifted right)
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Input Embedding

B More specific explanation

- Let's begin by turning each input word into a vector using an embedding algorithm

* The embedding only happens in the bottom-most encoder

- The abstraction that is common to all the encoders is that they receive a list of vectors

each of the size 512

* In the bottom encoder that would be the word embeddings, but in other encoders, it

would be the output of the encoder that is directly below

- The size of this list is a hyperparameter we can set — basically it would be the length of

the longest sentence in our training dataset

18 / 45
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Positional Encoding

B A way to account for the order of the words in the input sequence

B A vector added to each input embedding

- Provides meaningful distances between the embedding vectors once they are projected into

Q/K/V vectors and during dot-product attention

EMBEDDING
WITH TIME
SIGNAL \

POSITIONAL ‘
ENCODING

EMBEDDINGS L1

INPUT

POSITIONAL 084 POO] 054 1 eI 0.0002| -0.42 [
ENCODING
+ +
EMBEDDINGS LT [T T 1]
INPUT
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Positional Encoding

plt.figure(figsize=(15, 5))

pe = PositionalEncoding(20, ©)

y = pe.forward(Variable(torch.zeros(1, 100, 20)))
plt.plot(np.arange(100), y[@, :, 4:8].data.numpy())
plt.legend(["dim %d"%p for p in [4,5,6,7]])

None

1.00 -
0.75 A ‘\
0.50 -
0.25 1
0.00 1
—-0.25 -
-050 { = dim4
dim 5
—0.75 { —— dim 6
100 { = dim? AN
(') 2'0 4'0 6'0 8‘0 1C;0

Data Source: https://nlp.seas.harvard.edu/2018/04/03/attention.html
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Positional Encoding - Required Properties

B Two properties that a good positional encoding scheme should have
- The norm of encoding vector is the same for all positions
- The further the two positions, the larger the distance

- A Simple Example (n = 10,dim = 10)

PE('posQi) - SiIl(p()S/1000027:/d’model)

PE(pos,2i+1) = cos(pos /1000024 dmodet )

Distances between two positional encoding vectors

X1 X2 X3 X4 X5 X6 X7 X8 X9 XI10
X1 0.000 1.275 2.167 2823 3.361 3.508 3.392 3.440 3417 3.266
X2 1.275 0.000 1.104 2.195 3.135 3511 3.452 3.442 3.387 3.308
X3 2.167 1.104 0.000 1.296 2468 3.067 3.256 3.464 3.498 3.371
X4 2.823 2.195 1.296 0.000 1.275 2.110 2.746 3.399 3.624 3.399
X5 3.361 3.135 2468 1.275 0.000 1.057 2.176 3.242 3.659 3.434
X6 3.508 3511 3.067 2.110 1.057 0.000 1.333 2.601 3.169 3.118
X7 3.392 3.452 3.256 2.746 2.176 1.333 0.000 1.338 2.063 2.429
X8 3.440 3.442 3.464 3.399 3.242 2.601 1.338 0.000 0912 1.891
X9 3417 3.387 3.498 3.624 3.659 3.169 2.063 0912 0.000 1.277
XI0 3.266 3.308 3.371 3.399 3434 3.118 2429 1.891 1.277 0.000
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Self Attentions
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Self-attention

B Area of Self-attention
Output
Probabilities
[}
. '
Feed
Forward
~ | | Add & Norm ﬁ
g e Multi-Head
Feed Attention
Forward I XM Nx
N———
N® Add & Norm
¢—>| Add & Norm | Y=
Multi-Head Multi-Head
Attention Attention
Y 3 7 I, TN
mmmm—— - _J)
Positional Positional
. &) & .
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)
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B After embedding the words, each of them flows through each of the two layers of the

[ i t t ]
t t

encoder

;
[ T[] LTI
t t

t
[ Self-Attention ]
t t 1

- Word in each position flows through its own path in the encoder

- There are dependencies between these paths in the self-attention layer

* The feed-forward layer does not have those dependencies (parallelization becomes

possible)
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Encoding Procedure

B An encoder receives a list of vectors as input

B It processes this list by passing these vectors into a ‘self-attention’ layer, then into a
feed-forward neural network, then sends out the output upwards to the next

encoder

Feed Forward Feed Forward
Neural Network Neural Network

Self-Attention
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Self-Attention at a High Level

B Input sentence to translate:

The animal did’t cross the street because it was too tired
- What does “1t” refer to? street or animal!?

- Simple question to a human but not as simple to an algorithm

B Self attention allows it to look at other positions in the input sequence for clues that

can help lead to a better encoding for this word

B Self-attention is the method the Transformer uses to bake the “understanding” of

other relevant words into the one we’re currently processing

26 / 45




Self-Attention example

Layer:| 5 | Attention: | Input - Input v

The_ The_
animal_ animal_
didn_ didn_
t_ t_
Cross_ Cross_
the the_
street_ street_
because_ because_
it_ it_
was_ was_
too_ too_
tire tire

d d

Source codes:
https://colab.research.google.com/qithub/tensorflow/tensor2tensor/blob/ma
ster/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=0JKU36QAfgOC

27 / 45
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https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=OJKU36QAfqOC

Self-Attention - Step 1

M Step I:Create three vectors from each of the encoder’s input vectors

- Query:The query is a representation of the current word used to score against all the other
words (using their keys).We only care about the query of the token we’re currently

processing.

: Key vectors are like labels for all the words in the segment. They’re what we match

against in our search for relevant words.

:Value vectors are actual word representations, once we’ve scored how relevant each

word is, these are the values we add up to represent the current word.

value #3
Query #9 } | value #2

“A robot must obey the orders given it” O W
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Self-Attention - Step 1 (cont.)

M Step I:Create three vectors from each of the encoder’s input vectors

- These vectors are created by multiplying the embedding by three matrices that we trained

during the training process

Input

Embedding LT T T] [T T T]

Queries o | D:D C12|:|:|j wea
Keys [T T] [T 1]

Values [TT1] [T 1]
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Self-Attention - Step 1 (cont.)

M Step I:Create three vectors from each of the encoder’s input vectors
- Note) These new vectors are smaller in dimension that the embedding vector
- Q,K,andV are 64-dim. while embedding and encoder input/output vectors are 512-dim.

 They do not have to be smaller, but it is an architecture choice to make the computation

of multi-headed attention (mostly) constant
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Self-Attention - Step 2

M Step 2: Calculate a score, i.e., how much focus to place on other parts of the input
sentence as we encode a word at a certain position

- The score is calculated by taking the dot product of the query vector with the key vector of

the respective word we are scoring

Input

Embedding LT T L]
Queries q1 D:D g2 D:'j
Keys [T 1] [T 1]
Values Djj Djj
Score g1 * Ki = g1 ® =




Self-Attention - Step 3, 4

B Step 3: Divide the score by /dj (= 8 in the original paper since d;= 64)

- This leads to having more stable gradients

I Step 4: Pass the result through a softmax operation

- The softmax score determines how much each word will be expressed at this position

Input

Embedding [T T 1] [T T 1]
Queries o ] a [T
eys (11 1T
Values [T 11 [(TT1]
Score gi® ki= qi * ko =
Divide by 8 (/d;. )

Softmax
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Self-Attention - Step 5

- to keep intact the values of the
words we want to focus on

- drown-out irrelevant words

Input

Embedding
Queries

Keys

Values

Score
Divide by 8 ( iy )
Softmax
Softmax

X

Sum

33/45

B Step 5: Multiply each value vector by the softmax score




Self-Attention - Step 6

B Step 6: Sum up the weighted value vector which produces the output of the self-

attention layer at this position

Word Value vector Score Value X Score
<5> [ 0.001
a | 0.3
robot | 0.5
must Djj 0.002
obey ] 0.001
the | 0.0003
orders I 0.005
given ] 0.002
it ] 0.19
Sum: |
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Matrix Calculations of self-attention

softmax( )
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Multi-head Attentions
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Multi-head Attention

B Expand the model’s ability to focus on different positions

Calculating attention separately in
eight different attention heads

v

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7
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Multi-head Attention

I Attention heads are concatenated and multiplied by an additional weight matrix to be

used as an input of feed-forward neural network

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the madel

X

3) The result would be the ~ matrix that captures information
from all the attention heads. We can send this forward to the FFNN
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Multi-head Attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
W@
Qo
[Pt
W, Q
* |n all encoders other than #0, _ 01

we don't need embedding. =
We start directly with the output __""—H H—{7

of the encoder right below this one

Q7

39 /45




Multi-head Attention

Attention with two heads Attention with eight heads

Layer:| 5 ¥ | Attention: | Input - Input v

Layer: | 5 §| Attention: | Input - Input - -_ .
..The The | & The
L . animal_ animal_
animal_ animal_ did did
didn_ didn_ o -
t_ t_ t_ t_
- - Cross._ Cross_
Cross_ Cross_ i the
e
the_ the_ - Ny
street_ street_ street_ street_
because_| because_
because_ because_
. : it it
it it = -
- IS Was_ was_
Was_ was_
t00 {00 too_ too_
- . tire tire
tire tire 5 4
d d - -
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Residual Connections
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Residual Connections

B Each sub-layer (self-attention, FFNN) in each encoder has a residual connection

around it followed by a layer-normalization step

A 3 § £
. "( Add & Normalize ) ‘,( Add & Normalize )
E‘ ( Feed Forward ) ( Feed Forward ) E ( Feed Forward ) ( Feed Forward )
SEemmmmm- $---------mmm e $ S 7 7y
,&( Add & Normalize ) [T 1117
4 4 A A

1
1
1
' ( Self-Attention )

"'"""g """"""""" é > LayerNorm( +| H }-)
POSITIONAL |
ENCODING

L] NN

e

L

POSITIONAL
ENCODING

LT 1]
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Residual Connections

B This goes for the sub-layers of the decoder as well

- Ex: 2 stacked encoders and decoders

( Softmax )

L]
( Linear )
7y
e
i §
:*( Add & Normalize )
E ( Feed Forward ) ( Feed Forward )
e e — )
:*( Add & Normalize )
' L 4
""':"( Encoder-Decoder Attention )
Memmmeeeon I I )
,.p( Add & Normalize ) ,‘p( Add & Normalize )
: ) ) E 1 L]
E ( Self-Attention ) ! ( Self-Attention )
+ A
" ENCODING é é Jl-) Jl')
X1 X2

Thinking Machines




Position-wise FF Networks
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Position-wise Feed-Forward Networks

Position-wise FF Networks

Qutput
Probabilities
+
'y ™\
Add & Norm
Feed
Forward
' ™y | Add & Norm |*-\
,_.* :
et Pllive Multi-Head
Feed Attention
Forward YT M
—
Nix Add & Norm
r—b{ Add & Norm I Masked
Multi-Head Multi-Head
Attention Attention
. WM TN VI TN
e J \, —
Paositional @—O O—@ Positional
- N> & :
Encoding 1 ] Encoding
Input Output
Embedding Embedding
Inputs Qutputs
(shifted right)
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Position-wise FF Networks

Position-wise Feed-Forward Networks

4 4
- Fully connected feed-forward network "( Add & Normalize )
. . : [} 4
- Applied to each position separately and : ( ERT——— ) ( e E— )
identically D SRR 4
CLTT] LLI1]
FFN(x) = max(0,xW; + b)) W, + b, 4 4
- The linear transformations are the same > LayerNorm( + I } } } B
across different positions : A A
‘ L] 1] (1]
, : A A
- They use different parameters from layer ; ( Self-Attention )
to layer 3 4 e
POSITIONAL é é
ENCODING
LT 1] [TTT1
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Masked Multi-head Attention
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Masked Multi-head Attention

Qutput
Probabilities
*
g ™\
Feed
Forward
o —
[ Add & Norm | .
el A el Multi-Head
Feed Attention
Forward ElER ) Nx
i o
N
* 1~ Add & Norm ) e
Multi-Head Multi-Head Masked Multi-Head Attention
Attention Attention
Sllinmiiliick . VI, T
Ve J I\ al’,
Positional D Positional
Encodi & :
ncoding 1 y Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)
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Masked Multi-head Attention

B Self attention layers in the decoder is only allowed to attend to earlier positions in
the output sequence, which is done by masking future positions (setting them to —inf)

before the softmax step in the self attention calculation.

Input Input
Embedding [—l—li [—l—li Embedding |—|—| ‘l—li
Queries 4 ::I:‘ q ::lj Queries q D: ] I:I:D
Keys (TT1] [TT] Keys (TT] [TT]
Values —_—Ij —_—Ij Values D—_— D]j
Score g1 e ki= g1 e ke = Score qie ki= qi* ke = _jnf
Divide by 8 (v ) Divide by 8 (/d ) -inf
Softmax Softmax I 0
Softmax Softmax

X (1] X CLI]
Sum [T [TT] Sum [TT] [TT]
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Masked Multi-head Attention

Masked Self-Attention

score 20% 80% 0% 0%
K1 l ] k2 | l -00 =00
" A
X X2 | _ Xs| [ [ | AN
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Masked Multi-head Attention

B Do not need to be done sequentially, but can be done at one batch

Features Labels
robot must be rders must
robot must ~ el obey
robot must obey lers orders
robot must obey orders <eos>
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Masked Multi-head Attention

Masked Multi-head Attention Scores
(before softmax)
. robot must obey orders 0.11 0.00 8.81 2.79
Queries
robot must obey orders 0.19 0.50 0.30 9.48

robot must obey orders X —

robot must obey orders 0.53 0.98 0.95 0.14

robot must obey orders 0.81 0.86 0.38 9.90
Scores Masked Scores
(before softmax) (before softmax)
p.11 0.00 0.81 0.79 . 0.11 —-inf -inf —inf
Apply Attention S a
.19 ©.50 0.30  0.48 Mask 0.19 | @0.50 | -inf  —inf
B.53 B.98 0.95 0.14 B.53 .98 B.95 —1inf
@.81 0.86 0.38 0.90 0.81 0.86 ®.38 0.90
Masked Scores
Scores
(before softmax)
0.11 -inf -inf —-inf Softmax 1 (7} 0 0
0.19 8.50 | -inf = -inf (along rows) 0.48 .52 0 0
0.53 0.98 8.95 —-inf B.31 B.35 0.34 0
n.81 f.86 P.38 0.90 B.25 B.26 0.23 0.26
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Combining Encoder & Decoder
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Combining Encoder & Decoder

The encoder start by processing the input sequence.

The output of the top encoder is then transformed into a set of attention vectors K and V.

B These are to be used by each decoder in its “encoder-decoder attention” layer which helps the

decoder focus on appropriate places in the input sequence:

Decoding time step:(1)2 3 4 5 6 OUTPUT
( )
( Linear + Softmax )
ENCODER ) [ DECODER )
L) L)
ENCODER ) DECODER ]
. J
EMBEDDING
WITH TIME [TTT] [TTT] (T[]
SIGNAL
EMBEDDINGS LT LI} [LIT]
INPUT Je suis  etudiant
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B Repeat the process until a special symbol is reached indicating decoder has

completed its output.

B The output of each step is fed to the bottom decoder in the next time step

Decoding time step: 1(2)3 4 5 6 OUTPUT
4 )
( Linear + Softmax )
ENCODERS DECODERS ]
\_ J/
EMBEDDING t t t t
WITH TIME CTTT1 LT LT 117
SIGNAL
EMBEDDINGS 11 OO OO LT
e suis  étudiant PREVIOUS
INECT J OUTPUTS
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Final Linear & Softmax Layer
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Final Linear & Softmax Layer

Output
Probabilities

The Final Linear and
Softmax Layer

Softmax

i

Linear

‘\
ll =
J/

Add & Norm
Feed
Forward
- R Add & Noerm
_ ‘
Geelih ol Multi-Head
Feed Attention
Forward 7 XY N x
Rl
Nix Add & Norm
r—>| Add & Norm | TR
Multi-Head Multi-Head
Attention Attention
. SN NI 3 I TN
L_ J L _JJ
Positional @-@ g Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)
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Final Linear & Softmax Layer

M Linear layer

- a simple fully connected neural

Which word in our vocabulary

network that projects the vector i< acsociated with this index? am
produced by the stack of decoders
Get the index of the cell
into a much larger vector called a with the highest value ’
(argmax)
logits vector
log_probs LT CTTT T e o .
. SOftmaX Ia)’er 012345 * . vocab_size
. . ( Softmax )
- turns those scores into probability T
. . e s logits (HENEETEENEENNEEYES =
- e cell wi € nighest probabllity IS 012345 ) . vocab_size
The cell with the highest probabilit ’
chosen, the word associated with it is ( Linear )
o 4
produced as the output of this time Decoder stack output

step
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