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Why Data Ethics?
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Data Privacy
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https://gdpr.eu/
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://www.pipc.go.kr/
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AutoML(Automated Machine Learning)
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https://cloud.google.com/automl
https://automl.github.io/auto-sklearn/stable/
https://automl.github.io/auto-sklearn/stable/
https://automl.github.io/auto-sklearn/stable/
https://www.h2o.ai/products/h2o-automl/
https://learn.microsoft.com/azure/machine-learning/concept-automated-ml
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MLOps(Machine Learning Operations)

B MLOps(Machine Learning Operations)

- ojAelY REo| Y, HiE, 29, BUEYINK MW NHSAsHD HA R B2t WHE

1

- b AT EQ0f JHH 0| DevOpsZt ACHH, Al 22 7 A 2tO|ZAO|Z 0| HE & HTH

- ™o 2 JM-2e|otH PHEE o 2 MH|A Z2EEEE St= 28 XA 2 MLOps

‘: ¢ EXPERIMENT = ", ¢
TRACKING 5y
[ ———=——mmawve]

DATA M L ‘ s < MONITORING &
VERSIONING ” = i am—Er - PERFORMANCE TRACKING

L RO

(

MODEL A

DEPLOYDMENT/SERVING “.

28 / 33




B MLOpsS| E&

22|

- HO|Het 28 #HE O|=52 MAXHC=

ASIE 2 i B L|E 2

LHO

<l

- HE0| 2| AH|

- Alztof et 23 95 XohE

<l

IOl El/AHE AL

‘60-”_'—
VI

- 7|0 22 955 20|HEtE, AH|[A O

HIOIE Drift(HIOlH 22 B2}t

ol

m_u

29 / 33




Generative Al Trends
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Al(Generative Al)
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https://openai.com/
https://stability.ai/
https://gemini.google.com/
https://www.cursor.com/
https://www.perplexity.ai/
https://openai.com/sora
https://www.elevenlabs.io/
https://www.nvidia.com/omniverse
https://github.com/features/copilot
https://www.deepmind.com/research
https://www.deepmind.com/research
https://www.figure.ai/
https://www.nvidia.com/en-us/ai/
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