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WHY DATA SCIENCE MATTERS

&
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COST REDUCTION

- =l —

REVENUE GROWTH SAVING LIVES

( k.
PROBLEM | DATA > MODELING | BUSINESS
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Finance Case Studies

6 /65




Credit Card
Fraud Detection

Credit Card
Fraud Detection
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GIOIE] Ol Al 1. A2 21 (ZH AlZH, ZH A, Hej x| )

CREDIT CARD TRANSACTION LOGS: A DATA SCIENCE PERSPECTIVE

©  WHEN? HOW? WHERE @5
Q
e Yo Yeu - Resal
10:30 AM 1:45 PM || @ Q
D° 9 Londn - Duindywoties:

Q00— ° O—e—0O Tekya - Retaurant

7:00 AM 145PM @S Online o
Q Q

Tinnsaction Frequency by Hour ) ) )
Method of Payment Geagraphic Coordinates/Merchant Location

V /\/ Payment Method Breakdvwn: - I
il ﬂ

. ) 60% {ﬂ 25% NYC Londan Onilwe Global
Timesteping each event Ca% %A ?;'F“Ce Top Locations of Volume:

DATA SCIENCE CONTEXT: Raw transaction data forms a chronoocical, multi-dimensional log for
fraud detection, behavioral analytics & market Basket analysis

Q & @

9/ 65




HIOIE oAl 2. ZXH =4 X AHE T

CREDIT CARD FRAUD DETECTION
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CIO|E| OlA| 4. AFEXt =25 9l 97 7a2j o] =

USER PROFILE

CREDIT CARD ACTIVITY

RECENT TRANSACTIONS

AMAZON.COM ONLINE RETAIL $125.78

NAME: JANE DOE STARBUCKS COFFEE -$5.50

AGE 34
OCCUPATION: WHOLE FOODS $89.30 -889.30
SOFTWARE ENGINEER
INCOME LEVEL A DELTA AIRLINES TRAVEL -$450.00
$120,000+

TOTAL SPENT THIS MONTH: $ 1,230.45
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- |solation Forest

- Local Outlier Factor(LOF)

B 2R E2E 78 EX (X =gs)
- M EEATZ 28

- Logistic Regression

- Random Forest

- XGBoost
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https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier
https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier
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https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html

Fpz — score

B Fﬁ — score

Precisionf RecallZ g 7t 22tEH 2= |0,
Recall 32 =& BtEFot Tt X[HO|LCH,

. p=10[% F13} 2T} 0.8}
- > 10| Recall2 O Z= '_ — B

- B < 10|™ Precisiong O Zx

0.0 0.2 0.4 0.6 0.8 1.0
Decision Threshold
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https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html

PR-AUC

B PR-AUC
- PR-AUC (Precision—Recall Curve): Precision-Recall =4 Or2jjf HH
oA 20" JZ0M M B+ U0 27 452 2YSHH
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AU-ROC(0|=Z «=2| 7|Ht TPR/FPR)ELCH &M SeiA EX0f ot

ROC Curve (AU-ROCQC) Precision-Recall Curve (PR-AUC)
1.0t 1.0t
0.8f oslh
g
@
0.6}
g 506}
S w
= kv
@] ()
T 0.4} £
3 |
= 0.4
0.2
0.2}
0.0f
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate Recall
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https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
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Mini Project

Kaggle2| Credit Card Fraud Detection H|O|E{Al 28

- HO|HAl CtRZE (Kaggle)

m Hoje =d3d EXM o2 7IE HE

- A ME2 (RandomUnderSampler)

10

H A= 2l (RandomOverSampler)

wn

MOTE

B Logistic Regression, Random Forest, XGBoost & H| !

rx

EH Al-'c'>'|-

1771 O

- Random Forest, XGBoost M &-&

B F1Score ¥ AUC 7|t M5 T7}

B 2UAHZ HZA Al Precisionl} Recall H2} A2+ 2 M
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https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler.html
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler.html
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.RandomOverSampler.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.RandomOverSampler.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.RandomOverSampler.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier

Credit Scoring
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HIOJE] OlA] 1. &

CREDIT SCORING INCOME ANALYSIS

Applicant Income Levels & Distribution

Applicant Groups Income Distribution by Level

Group A | ' = 448,99k

Fo. I 20,57k

(UsD)

N
Group A § B S47.26K

Group B | 448,10k

Aveage [nome

GroupC §

o I S5 9

Group A Aveap A AvapBC

523k

Low Income High Income
M Low Income M Middle Income M (40k-90k

M Low Income (40k-90k)
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HIOJE] GflA] 2. X EE

APPLICANT OCCUPATION FOR

CREDIT SCORING
O EEEEE -
. 25%

15%

PROFESSIONAL 20%
@ UNEMPLOYED 5%

IMPACT ON CREDIT SCORE:

1 Higher income stabity stability generally leads to &/
better scores.

23 / 65
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LOAN & CREDIT PAYMENT DELINQUENCY

HISTORY
Late Payments by Applicant Category

 EENENEEEEEEEEEE L
i -
e | | | L
Sl | | [ [ [
el [ | [ L
el | | | HEEEESRE—- |

Number of Late Payments

sl | | [P

Months Jan2022 Jan2022 Jul2021 Augus Augh 2 Jul2021  Jun 2022 Mov 2025 Dep2023 Dec 2023

Prime Sub-Prime Near-Prime Defaulted

On-time M Late30days M Late 60 days Late 90+ days




HIO|E] OfA| 4. X1 H|=

DEBT-TO-INCOME (DTI) RATIO APPLICANT FINANCIAL COMPARISON

DTl = (Monthly Debt / Monthly Income) x 100

o A

| o, &
d Y oogoo an,
Yy £ o,
0% >50% MONTHLY INCOME MONTHLY DEBT

0
38 /0 38% Applican’s DTI Ratio
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HIOIE oAl 5. 8

CREDIT SCORE DISTRIBUTION & LOAN APPLICANT ANALYSIS

800-850 Excellent Risk Fair Risk Fair Risk
A
740-799
850
Approved Applicants
20 -
0 : : , _;A - y
300 400 500 600 600 700 800

Rejected Applicants

26 / 65

Very Poor Risk

E
Very Poor Risk

AVERAGE CREDIT SCORE

{ el
850 Approved Rejected
720 550




- Logistic Regression
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https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://lightgbm.readthedocs.io/en/stable/
https://lightgbm.readthedocs.io/en/stable/
https://shap.readthedocs.io/en/latest/
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Healthcare Case Studies
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Disease Prediction

Disease Prediction
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HIO|E] GflA] 1. HZ AL

o HEALTH METRICS FOR DISEASE RISK ASSESSMENT

BLOOD PRESSURE (mmHg) @ BLOOD GLUCOSE (mg/dL) @
DYSTICAL / >160/100) HIGH
CRITICAL : HIGH

(140/90) (101-125)

NORMAL (120/80) NORMAL (701-200)

®©® &

33 /65

CHOLESTROL (mg/dL) @)

CRITICAL
(>125)

/\/ﬂW

NORMAL (<200)




HIO|E] OfA] 2. 7158 BR

FAMILY HEALTH COMPASS

Disease Risk Assessment & Inherited Patterns

©
vl

Legend YOU / PROBAND

@ Heart Disease . Solid Red Skpe :_ o E]

' Affected -} Affected g

. Both Conditions {_’ Unknown History Inherited Risk Pattern
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HIO[E] Ol A] 3. CtO|Z2AEIY BE (8H, &5

=  HABITS

SMOKING HABITS

3 LOW RISK
HIGH RISK .

LUNG DISEASE RISK

NON-SMOKERS

@ UNHEALTHY LIFESTYLE

HEALTHY LIFESTYLE

[ T NS | N\

\%
LIFESTYLE & DISEASE RISK%ﬂ

@ CONSUMPTION :ﬁ ACTIVITY
ALCOHOL CONSUMPTION EXERCISE FREQUENCY
i # LOW/SEDETTARY
= recULAR
@ L ¥ <2
HEAVY DRINKERS HEART DISEASE RISK
' (0 )
\'\ ,;‘j
LIVER DISEASE/NONE ACTIVE HEART DISEASE RISK
INCREASED DISEASE RISK
x (Heart, Diabetes, Cancer)

DECREASED DISEASE RISK
(Wellness, Longetvity)
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https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://shap.readthedocs.io/en/latest/
https://shap.readthedocs.io/en/latest/
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Medical Imaging
Diagnosis

Medical Imaging
Diagnosis
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https://www.hhs.gov/hipaa/index.html
https://www.hhs.gov/hipaa/index.html
https://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EC%9D%98%EB%A3%8C%EB%B2%95
https://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EC%9D%98%EB%A3%8C%EB%B2%95

g 24 (2/3)

- 2 B 2At a0t {2 B2 EOLHOH 2ad 27 2
- HIoJH &4, SMOTE, 2eli£& 7tSX| S Htet 7|@s HEor0] 229l Yttet 45

DATA IMBALANCE
Original Dataset: Skewed Classes

&

POSITIVE (Disease - 10%) NORMAL (No Disease - 90%) NORMAL (No Disease - 90%) TRAINED Al MODEL
‘ (Improved Accuracy)
Problem: Al learns biased patterns. t
DATA AUGMENTATION TECHNIQUES
BEFORE (Imbabnsed) 1. Rotation & Flipping Methods: Create New Data
=
@ m < 1. Rotation & Flipping

2. Noise Injection Al-Generated

@ @ 3. Synthetic Images (e.gl, GANs)

FUER EY DOOD

4. Combined Dataset New Dataset: Equalized Classes (50% Positive, 50% Normal)
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https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
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Industry Case Studies
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Predictive
Maintenance

Predictive
Maintenance
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HIOIE OA] 1. MM AMAE CHO[H (&, &5,

[

INDUSTRY 4.0
ANALYTICS
TEMPERATURE (°C)

SYSTEM STATUS [ ABNORMAL SPIKE
AA - PUMP SYSTEM 8.6 /\ /\ \ '\ OVERII!ATRI‘;K I
8 g8 _} Y, Vot W/VJ\-\/—J / \ i \/__ \/, e |

VIBRATION (g)

| TREND CHANGE - BEARING WEAR

PREDICTIVE ALERTS £ 840 [\ S—— W

@A) TEMPasYC

VIBRATION

w.rep.:m.:z 1g CURRENT (A)

J /\ UNE?KCTED DROP - CIRCUIT FAULT \

A A
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HIOIE OfA] 2. EH| AHE O|F 3 RXIE+ 7|F

\

DASHBOARD OVERVIEW
TOTAL OPEBATING HOURS: MAINTENANCE EVENTS MAINTENANCE (LA TH)

18,500 ' 12 12

PREDICTIVE ALERTS PREDICTIVE ALERTS)

EOUIPMENT HEALTH INDEX

MACHINE USAGE & MAINTENANCE HISTORY MAINTENANCE LOGS

SERATING 1 itk - - = NOV 01: BEARING REPLAECENT (UNIT 3)
e MACHINE A~ OPERATING HGURS 0 NSPECTION n PARTS REPLACENT REPH REPAIR
23 00 \RS, RRNOK 3 %1 26, BORAN } N 4500 HRS

———— /_\ - /-\)/,,, — — — - OCT 26. SENSOR GALIBRATION (UNIT 1)
d kj b = > ~ POST REPAIR

6 MACHIE A - OPERATNG HOIRS 6 WAGE CYCLES n INSPECTION n PARTS RELACEINT REPAIR OCT 28. ROUTINE INSPECTIVE
’ iciia : S CNANIGR (ALL UNITS)

UPCOMING EVENTS

w334 6.000RICN NDATICOMWX TIASS e

PREDICTIVE MAINTENANCE SCHEDUL NOV 15: A-DRIVEN PREBICTIVE ANALYTICS RUN

MOIRY ADE INES DUSTIMET 20T DINTTILAS paisIToN

3 4

50 / 65




= HIO[EHO A|AE o5 =2

N

A
- T d

A

i

Kr

HSIHK| =

Tor

kil

ofnu

~O
Pl

ofru

ol

2| X}2} Of

215t > o

g AES HES Al

i

51/ 65



https://www.deepshark.org/courses/data_science/w/07_time_series#arima
https://www.deepshark.org/courses/data_science/w/07_time_series#arima
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
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Vision-Based
Quality Control

Vision-Based
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https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
https://arxiv.org/abs/2010.11929
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Mini Capstone
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