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# 2[Ed WX 2X|

pip install networkx

import networkx as nx
import pandas as pd

# OIX|] Z|AER = Y

df = pd.DataFrame({
"source": ["A", "A", "B", "C"],
"target": ["B", "C", "D", "D"],
"weight": [3, 5, 2, 1]
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nx.from_pandas_edgelist( =

|A'I 'Bll ICIl 'Dl]
af, ) (A, 'B', {weight" 3}), (A, 'C’ {weight’: 5}),
source= source ,

target="target", ('B', 'D', {'weight" 2}), ('C', 'D', {'weight": 1})]
edge_attr="weight",
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create_using=nx.DiGraph()

)

# 7|2 M =9

print("=E =:", G.number_of_nodes())

print ("X %=:", G.number_of edges())
print("E :", list(G.nodes()))

print ("X :", list(G.edges(data=True)))
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https://www.deepshark.org/courses/data science/w/10 network data analysis#mtx preprocessing

Top-50 Degree Nodes Top-10 Degree Nodes



https://www.kaggle.com/datasets/wolfram77/graphs-snap-email-eu?select=email-Eu-core-temporal.mtx
https://www.deepshark.org/courses/data_science/media/weeks/files/chap10/email-Enron.mtx
https://www.deepshark.org/courses/data_science/media/weeks/files/chap10/email-Enron.mtx
https://www.deepshark.org/courses/data_science/media/weeks/files/chap10/email-Enron.mtx
https://www.deepshark.org/courses/data_science/w/10_network_data_analysis#mtx_preprocessing
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Network Centrality: How to Measure Node Importance

DEGREE CENTRALITY |BETWEENNESS CENTRALITY |

Importance = # of direct connections Importance = Bridging connections
EIGENVECTOR CENTRALITY
Importance = Avg. distance to all others Importance = Connected to important nodes
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DEGREE CENTRALITY

Node A has high degree centrality due d e ’U
its numrous connections.
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Closeness &4 (Closeness Centrality)

Closeness ‘4 (Closeness Centrality)
- Bt L EON G2 2 E L EX|O B H2lo| g2 Fo|FICt
- HEQR AH A9 M2 d(Accessibility) 22 HE =it S 2 LIEFHCE

-

- U0l EEF LE =E2 WEA 2 - UL,

d(v,t): = E v2|0f| M7t K|
x| EF A2

N: 8K = E =

17 / 30




Eigenvector 541’8 (Eigenvector Centrality)
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Eigenvector & Eigenvalue 281 S 4t
https://youtu.be/PFDu90oVAE-g?si=0CUZjVxbyMAgdH?2I
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https://youtu.be/PFDu9oVAE-g?si=oCUZjVxbyMAgdH2l
https://youtu.be/PFDu9oVAE-g?si=oCUZjVxbyMAgdH2l
https://youtu.be/PFDu9oVAE-g?si=oCUZjVxbyMAgdH2l
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https://youtu.be/meonLcN7LD4?si=J389VUW_v8xAZK2T
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https://www.deepshark.org/courses/data science/w/10 network data analysis#centrality comparison

Network Graph (Randomly Generated) Centrality Values
Node Degree Betweenness Closeness Eigenvector PageRank
1 0.12 0.00 0.33 0.06 0.04
2 0.06 0.00 0.26 0.02 0.03
3 0.18 0.12 0.34 0.06 0.07
4 6.24 0.43 0.46 0.16 0.08
5 0.24 0.25 6.45 0.32 0.097
6 .24 0.10 0.40 .36 0.07
7 0.24 0.12 0.38 0.30 0.07
8 0.24 0.06 0.40 0.36 0.07
9 0.06 0.00 0.28 0.08 0.02
11 0.12 0.00 0.33 0.06 0.04
12 0.06 0.00 0.26 0.02 0.03
13 .18 0.12 0.34 0.06 0.07
14 0.24 0.41 0.46 0.16 0.08
15 8.24 0.22 0.44 0.32 0.07
16 0.18 0.00 0.36 0.28 0.085
17 0.29 0.17 0.40 0.38 0.08
18 0.24 0.06 0.40 0.36 0.06
19 0.06 0.00 0.29 .10 0.02
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https://www.deepshark.org/courses/data_science/w/10_network_data_analysis#centrality_comparison
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https://visjs.org/

https://www.deepshark.org/courses/data science/w/10 network data analysis#interactive visualization
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https://www.deepshark.org/courses/data science/media/weeks/files/chap10/interactive network.html
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https://www.deepshark.org/courses/data_science/w/10_network_data_analysis#interactive_visualization
https://www.deepshark.org/courses/data_science/media/weeks/files/chap10/interactive_network.html
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https://networkx.org/documentation/stable/reference/algorithms/community.html

https://www.deepshark.org/courses/data science/w/10 network data analysis#subnetwork

pip install python-louvain

Community Detection using Louvain Algorithm

16

N

g 5 Community 0: [0, 1, 2, 3,7, 11, 12, 13, 17, 19, 21]
\\ /21 Community 1: [24, 25, 28, 31]
iL Community 2: [4, 5, 6, 10, 16]
[

R} —1 Community 3: [8, 9, 14, 15, 18, 20, 22, 23, 26, 27, 29, 30, 32, 33]
13 ‘\

‘\ 0

1{]

12
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https://www.deepshark.org/courses/data_science/w/10_network_data_analysis#subnetwork
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Homeworks Briefing (with SNAP Dataset)

B Homeworks

https://www.deepshark.org/courses/data science/w/10 network data analysis#¥homework briefing
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