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AMEAH 5= (Pearson Correlation Coefficient)

7H'g

- & B30l WM™ A (Linear Relationship) & X2 E3SI= A&

- & =%HCovariance)2 EZE2}(Standardization) oF HEf

- EHlof BAIQI0l 1 < r < 1 HAZ BHHE =10 — )y — ¥)
\/Z 1(xl _ x)z n=1(yi T 37)2

m 324K Covariance)?| 7i'd
- S WA B Eeks EE LSS 2
e oy
G4 £ BRIl e WHOR 2XY
84 - & H47} wo wyoz gxY

- 00f| 7M7tE - 2A 8l

7/39

Cov(X,Y) = %Z(xi - X)(y; — )
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1.67 + 0 + 2.33
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A|(Causation)
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https://www.deepshark.org/courses/data science/w/06 correlation regression#correlation matrix

Heatmap of Correlation Matrix (10 Variables)
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https://www.deepshark.org/courses/data_science/w/06_correlation_regression#correlation_matrix
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I Kaggle@| Boston House Price HIO|H{Al-S ALES

deg 58
- B4 Zho| HTIRA| A
- T U B EY A2
- 9 90l =

B HOHACOREE

Boston House Prices-Advanced Regression Techniques

Data Card | Code (178)  Discussion (0)

v~ View more

boston.csv (41.36 kB)

Detail Compact Column

About this file

506 observations and 14 attributes

# CRIM = # ZN =
per capita crime rate by proportion of residential
tow! land zoned for lots over

25,000 sq.ft.

# INDUS

Suggestions (0)

proportion of non-retail

business acres per

town

# CHAS =
Charles River dummy
variable (= 1if tract

bounds river; O

otherwise)

I . &Ll

0.46

100

B.808632 16.88

2.

318

Fa

7.7

0 1

2}

- | 320 <» Code

(8):2 >
Download

10 of 14 columns v

[ Suggest Edits

# NOX = # RM
nitric oxides average n
concentration (parts per rooms pel
10 million)

0.39 0.87 3.56
8.53880 6.5758

& Download

Data Explorer
41.36 kB

[ boston.csv

Summary
» O 1file

» [ 14 columns



https://www.kaggle.com/datasets/fedesoriano/the-boston-houseprice-data
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DIS

RAD
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LSTAT

MEDV

493

=g 10T HE ddE

25,000 HH IO E(9f 2323m’) O &2 O B8 EX|Z X|HE =HE EX| H&
028 H|AOf(non-retail) & X< H|Z

2oy ol A=A §F = LiEIL = 0] #= (1: Fg, 0 HotX| s

07| & 24 AotE & (10002H22] 1 THe)

TEHCH "W d Il
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HAHO 57 = & SHX|NX|Q 75 AHe

NECR HAY X5

THAEMIE (10,0002 S A2 )

Sh-u AL H|=E

S0l ol HIES 7|Uo 2 AAtEl X[ &, Al: 1000(Bk — 0.63)2, OJ 7| A Bk= &0l Q17 H|&

ob?l ASKM25T) 272l Hl=(%)
Ap7t=Eiol S 7H4 (Thel: 1,000 2)
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https://www.deepshark.org/courses/data_science/w/06_correlation_regression#boston_house_code
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StLte| Z & H(Independent Variable) x 2t 5% ¥ <(Dependent Variable) y AtO[2| M
#A|(Linear Relationship) € Z2 2 st= EA N Y
- &, x7t B I y7F Of A HSH=XE Lt Z M(line) 22 ZAISHO] O £35H= Z0|Ct

- & 0], S5 AlZhx)at Al E=(y) ZH2f 24

S5 AZO] BHE+5 J7t ZOLTICHH, & Ha ALO|of= & M A7) EXjetet.

 Bo: BH (intercept), x =0 & <

- By: 7127 (slope), x 7t 1 Bt ZI7H W o Btk

e: LA (error term), A A X4t Ol gre| XHO|, A4k y7t 2[HM0A YOt HOLI=X|E E &
— e W2 227 A & = 9= EEXN S (random noise)d]| ST
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ZE| & H| = "H (OLS; Ordinary Least Squares)

B Y2 2= HOIH EES2FHO| AH2|(THAL, residual) 7t X271 £ =5 278

- 5,2 2| A M&aE g%t at2 SSE (Sum of Squared Error) X435t HEE XA S #

(OLS) O|2t11 oLt

n
Minimize Z(yi — P;)*
i=1
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MSE (Mean Squared Error)

B TH} NS HolE /5 ne R L HAZ = HAN IS A
B OLSC| Wa#E ot= MU CIE & X2} E|l= X|H2 ¢
Minimize MSE

~ SSE
= Minimize —
n

n
1
= MinimizeEZ(yi — P;)*
=1

l
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y (Dependent Variable)

AN AL

https://www.deepshark.org/courses/data science/w/06 correlation regression#simple regression

Simple Linear Regression Example

307 @ Data
—— Regression Line
25 4
20
15 ~
10
5 -

3| A== [2.0923798 6.28551344]

y = 2.0923798x + 6.28551344

¥ (Independent Variable)
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https://www.deepshark.org/courses/data_science/w/06_correlation_regression#simple_regression

Kaggle HIO|E| E4: XS X} HH| 0=

« AbSKto| HH[(MPG, Miles Per Gallon)= @l

4
0X
olr
=
>t
or
10
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u
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=30 hef Zat L,

m GHoJF C22E

- https://www.kaggle.com/datasets/uciml/autompqg-dataset
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https://www.kaggle.com/datasets/uciml/autompg-dataset

A A
4 A

HF 49F

mpg AFS X2 AHH| (Miles per gallon, % H=)
cylinders el

displacement HY 7| ZF (cubic inches)

horsepower O (horse power)

weight Atz 24 (Ibs)

acceleration 0—60mph 7% AlZt (seconds)

model year AA AL (model year)

origin H4 XY ZE (1: 0=, 2. 7, 3: €3)
car name A2k Ol &
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HlolE| 4 A=

https://www.deepshark.org/courses/data science/w/06 correlation regression#auto mpg code1

m th= 39 2M 3E: Horsepower - MPG

https://www.deepshark.org/courses/data science/w/06 correlation regression#auto mpg code?

R2 (B A|$, Coefficient of Determination)=

H ™ (intercept): 39.93586102117047 2| Z2o| X CiojEE opLt &
HHEI=X|E LIEIH= X &
- 7|27| (slope): -0.15784473335365365

- R 0.606 , SSE (sum of squared errors)

. RMSE: 4.893 SST (total sum of squares)

(MPG) #52| o 60.6%E HHE 4 UCt

« "XtEO| O (horsepowen Tt 2 AH]
=8 &2t S2| CtE 20210 ofs| =

«  LIHX] 40%= AtEF 24, Hi7[Z,

25/ 39
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https://www.deepshark.org/courses/data_science/w/06_correlation_regression#auto_mpg_code1
https://www.deepshark.org/courses/data_science/w/06_correlation_regression#auto_mpg_code2

- https://www.deepshark.org/courses/data science/w/06 correlation regression#auto mpg code3

Relation between Horsepower and MPG

Real Data
— R ion li Predicted y
egression line (Predicted ¥) o D|‘ E! Ol

y = 39.935 - 0.157x

40

30 4

@ g2 Qopxle A% Hol
% - A3+ R2 = 0606, AH|2| o
2° 60%7} OF2f W42 Mog 4
oleg ojojsict

10 4

T T T T T T T T
50 75 100 125 150 175 200 225
Horsepower
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https://www.deepshark.org/courses/data_science/w/06_correlation_regression#auto_mpg_code3
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Kaggle HIO|E] E4: XtSXt 7t Of|= (CHF 2lH)

- AtSAe| mof 7tA2 AT 37|, OrE, A4, EE S 065 2ele

d
:

Ak

0ot
o

Y=Lt

-« Kaggle®| Car Price Prediction H|O|E{4l= O| &3l X=Xt 7} (price)O|

Oof B30 o5 2 E=XS 24otet.

m HOHA CREE

- https://www.kaggle.com/datasets/hellbuoy/car-price-prediction
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https://www.kaggle.com/datasets/hellbuoy/car-price-prediction

A A
4 A

H ck:
symboling 2 e 55
wheelbase =7t A2| (inch)
carlength, carwidth, carheight NE= =
curbweight SKHSE (Ibs)
enginesize AE HI 7| (co)
horsepower O (hp)
peakrpm Z[CH 2| == (rpm)
citympg, highwaympg Co/ASKE2 A
price AtSAH £Of7HE (S5 H)
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https://www.deepshark.org/courses/data_science/w/06_correlation_regression#car_price

CIo|E{ 37|: (205, 26)

price enginesize horsepower curbweight citympg

0 13495.0 130 111

1 16500.0 130 111

2 16500.0 152 154

3 13950.0 109 102

4 17450.0 136 115
2| H Al

Variable Coefficient
0 enginesize 80.397
1 horsepower 48.838
2 curbweight 3.936
3  citympg -47.919
MM (Intercept): -10913.718
R2: 0.816, RMSE: 3814.81

2548
2548
2823
2337
2824

32 /39
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A|ZF$}: Actual vs Predicted Car Price

Actual vs Predicted Car Price

Actual Price
- Predicted Price

40000 4

30000 +
48]
o
-
[«
=]
o
=

= 20000 4
e
[«

10000 +

ﬂ .

T T T T T T T T T
5000 10000 15000 20000 25000 30000 35000 40000 45000
Actual Price
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QoA y = —10913 + 80.4 X enginesize
+48.84 X horsepower
+ 3.94 X curbweight
—47.92 X citympg

- QEl A 7|(enginesize)?t Ot (horsepower)0| S5 AHEFQ| 7tA0| &5 HL},

Xt2k 2 (curbweight) 7} 5242 742{0| Cia ASSH= ZAEk0| QUL

- QH|(citympg)?t E2+= (A7t F2 MHE+F) 7HH0| K2 Y — 1ds ANFE+F
=O| Lt

R? = 0.816

. ZYO| RHEX 71 HEC| of 816%2 ML

>.
on
o
>
>t
ikl
0]
ro
HU
ol=}
N
or
Ot
il

- LIHX] 184% &= EHE,

n

Apel, &

RMSE = 3814.81

_ ol% oxfo] EEEA 40| o 380022 AL o|0jstct.

F_Q

H| 7} S7] o




LHXL(Residual)2| 7H'd

4 an

>
7k =70

—/ HA—

LtX}(Residual): A X

F ol | X0

e, =y — Vi

ZEOo| 4 Hojy ZQEE OiLt H o=

bl
rir

XE

20F= A&

- 217290l 450] £HatE, FAtel BEE EAI0F DU MBS HAE 20| EIEDH| Yo

o % 9t

W Ol Ztxte| EF
£ 7 M
Q0| o0f 7tk Ol Zztat AXgtel W™l Xto[7F He| Qs
Sz 28 (Homoscedasticity) O Zgtel 27|0f whaf XhXtel F4At0] Y slof &t
= 2M (Independence) 3%%—¢?L\rdf§ﬂﬁﬁ%ﬁ§go?§
Mg (Normality) LXpo| 27t HHEX0| 7H7HOF &




https://www.deepshark.org/courses/data science/w/06 correlation regression#residual plot
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https://www.deepshark.org/courses/data_science/w/06_correlation_regression#residual_plot
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Residual Distribution Plot

Distribution of Residuals
7 - —

Frequency
=Y
|
AN

S
2: / _ .
| BB B

T T T T T
—10000 —5000 0 5000 10000 15000

Residual
R 2% A 8144
H34 44 ZLEXto| HEHO| 0 2K ol =0 HeF Qs
= HE| OFZto| HICHAE, & 24 | X| g CiN = TS
=t EX +10,000 oA &8 =Y D7t XpEol o F Xt e s




QQ plot of Residuals

Q-Q Plot of Residuals

. . 15000 -
Q-Q(Quantile-Quantile) Plot o
- S| 2 HO| XK} (residuals) 7t & E(normal 10000 -

distribution)E ME=X| A& CE AF
$ 5000 -
- teE MAEES 02N 29 g E
(Theoretical Quantiles) 5 01
- ME3=: AN XS] 22|44 (Ordered Values)
=5000
S w7t M kY HGEEE 2 EP MEO
®
IX[sof & 7| &4 10000 T v T T
Theoretical quantiles
wI g B 25 oA
SU& oA Ao 28 LA R 20| X [HE
mel #£&2 oFZH O AL O]t K| =X
A = Ef HEtH o= MY 8 78 UM = 25
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