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Lecture Goals

AZX| N2| (Missing Value Handling)

O &X| EtX| (Outlier Detection)

HI0|E| d28} (Data Normalization/Scaling)
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Z49 HIo|E| X 2| (Categorical Data Handling)
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H|O|E|{ H*{2|(Data Preprocessing)
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AZX|(Missing Value)Zt?
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B MCAR (Missing Completely at Random) -
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A 2| W

B N7 (Deletion)

B CHH® (Imputation)
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M7 (Listwise deletion)
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H|H®¥ (Deletion) &5

import pandas as pd
from typing import Tuple, Optional

def make_sample_dataframe() -> pd.DataFrame:
e d S8 A ColHEY My
data = {
"id": [1, 2, 3, 4, 5, 6, 7],
"age": [23, None, 31, 29, None, 41, 36],
"income": [52000, 61000, None, 58000, 60000, None, 72000],
"city": ["Seoul", "Busan", None, "Daejeon", "Seoul", "Seoul", None],

"hobby" : [None, None, "Run", None, "Music", None, None],

}

return pd.DataFrame(data)

missing_report(df: pd.DataFrame) -> pd.DataFrame:
"rZEE 4% Jjsot 2xg 2mEn
n = len(df)
report = pd.DataFrame({

"missing_count": df.isna().sum(),

"missing_rate": (df.isna().mean() * 100).round(2)
}).sort_values("missing_rate", ascending=False)
return report

listwise_delete(
df: pd.DataFrame,
subset: Optional[list[str]] = None,
keep_threshold: Optional[int] = None
) -> pd.DataFrame:
& 7 (listwise deletion)
- subset: A|YE ZYES T StLEtE NanO|F of
- keep_threshold(thresh): NaNO| Ofil ZtO| X[ 7<= O
(Ofl: keep_threshold=3 -> %4 37§ 0|2 /%1

if keep_threshold is not None:
# thresh= NaNO| OFl Zto| X4 Ji= 7|&F
return df.dropna(thresh=keep_threshold)
if subset is not None:
return df.dropna(subset=subset)
# 7|2 StLt2tz NanO| oW o A (ZE ZHE 7|FE)
return df.dropna()

variable_delete_by missing_ratio(
df: pd.DataFrame,
threshold: float = 0.4

) -> Tuple[pd.DataFrame, pd.Series]:

@ H|7{(variable deletion)
- threshold: Z&E0| threshold O|&Ql Z&EZ XA (e~1 ALO[)
: 0.4 -> AEFE 40% 0|4 ZAY Ax

(M7 = oF, HAE Z2H 55 A2lx)

miss_rate = df.isna().mean()
drop_cols = miss_rate[miss_rate >= threshold].index
return df.drop(columns=drop_cols), miss_rate[drop_cols]

if __name__ == "__main__":

def main():

# 0) dZ OO ZH|

df = make_sample_dataframe()

print("®& HIO[E\n", df, "\n")

print("Z2% E[ZE(EE)\n", missing_report(df), "\n")

#1) 8 AA: BE TY JFOR S IE W MA (UFY E4H)
df_listwise_all = listwise_delete(df)

print(f"[&d HA - HH ZZ 7|F] shape: {df.shape} -> {df_listwise_all.shape}")

print(df_listwise_all, "\n")

#2) H MAH: subset 7|F (O: age, income & SILIEE= NanO|TH AfA|)

df_listwise_subset = listwise_delete(df, subset=["age", "income"])

print(f"[& XA - subset=['age','income']] shape: {df.shape} -> {df_listwise_subset.shape}")

print(df_listwise_subset, "\n")

# 3) A X7H: keep_threshold AME (F=240| 47 DOJTHOIH Abx|)
df_listwise_thresh = listwise_delete(df, keep_threshold=4)

print(f"[& XA - keep_threshold=4] shape: {df.shape} -> {df_listwise_thresh.shape}")

print(df_listwise_thresh, "\n")

#4) @ MA: Z5E 40% 0|2 ZH HA

df_col_drop_40, dropped_40 = variable_delete_by missing_ratio(df,
print("[€ MAH - ZZFE 40% Ol AH] MAHE ZH:")
print(dropped_40.apply(lambda r: f"{round(r*100,2)}%"), "\n")
print(f"shape: {df.shape} -> {df_col_drop_40.shape}")
print(df_col_drop_46, "\n")

print("Z% EZE(Z M 2)\n", missing_report(df_col_drop_40),

#5) & MH: 25E eox Ol4fel ZHD O ZsHA HA
df_col_drop_60, dropped_60 = variable_delete_by missing_ratio(df,
print("[€ HMAH - ZHE eo% Ol AH] MAHE Z™H:")
print(dropped_60.apply(lambda r: f"{round(r*100,2)}%"), "\n")
print(f"shape: {df.shape} -> {df_col_drop_60.shape}")
print(df_col_drop_66, "\n")

# 6) DHO|Z2tQl OfAl: BN AZE =2 € M7 -> 1 CfF subset 7|&E
df_pipe, _ = variable_delete_by_missing_ratio(df, threshold=0.5)
df_pipe = listwise_delete(df_pipe, subset=["age", "income"])
print("[IZFO[Z2tRI] (Z HA se%) -> (subset & H7H)")
print(f"%|E shape: {df.shape} -> {df_pipe.shape}")
print(df_pipe, "\n")

main()

threshold=0.40)

"“\n")

threshold=0.60)




HAHH (Deletion) A

24t

&2 00l

id age income city hobby
1 23.0 52000.0 Seoul None
NaN 61000.0 Busan None
31.0 NaN None Run
29.0 58000.0 Daejeon None
NaN 60000.0 Seoul Music
41.0 NaN Seoul None
36.0 72000.0 None None

a Ul WN L O
NOoO b WwWN

2= oZE@e)

missing_count missing_rate

hobby 5 71.43
income 2 28.57
age 2 28.57
city 2 28.57
id 0 0.00

(& HH-AK ZE I =] shape: (7, 5) -> (0, 5)
Empty DataFrame

Columns: [id, age, income, city, hobby]

Index: []

[& Ml - subset=['age','income']] shape: (7, 5) -> (3, 5)
id age income city hobby

0 1 23.0 52000.0 Seoul None

3 4 29.0 58000.0 Daejeon None

6 7 36.0 72000.0 None None

[8 XIH - keep_threshold=4] shape: (7, 5) -> (3, 5)
id age income city hobby

0 1 23.0 52000.0 Seoul None

3 4 29.0 58000.0 Daejeon None

4 5 NaN 60000.0 Seoul Music

[E HAH-Z5Z40% 0l & ALHIT HIAE 2 &-:

hobby 71.43%
dtype: object

shape: (7, 5) -> (7, 4)

id age income city

1 23.0 52000.0 Seoul

2 NaN 61000.0 Busan
3 31.0 NaN None

4 29.0 58000.0 Daejeon
5 NaN 60000.0 Seoul
6 41.0 NaN Seoul

7 36.0 72000.0 None

ol WNBEFE O

ZE2ZEE N 2)

missing_count missing_rate

age 2 28.57
income 2 28.57
city 2 28.57

id 0 0.00

[ HH-ZFSZ60%01& AH] HA= Z2E:

hobby 71.43%
dtype: object

shape: (7, 5) -> (7, 4)

id age income city

1 23.0 52000.0 Seoul

2 NaN 61000.0 Busan
3 31.0 NaN None

4 29.0 58000.0 Daejeon
5 NaN 60000.0 Seoul
6 41.0 NaN Seoul

7 36.0 72000.0 None

Uk, WNBEFL O

12 / 39

[IFOI Z2t2l] (&€ M2 50%) -> (subset 2 Kl H)
%| & shape: (7, 5) > (3, 4)
id age income city
0 1 23.0 52000.0 Seoul
3 4 29.0 58000.0 Daejeon
6 7 36.0 72000.0 None
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1. Select Variables
with Missing Values

Zt AI-_T'_L_T'_U:”.

- O L— L—

4. Repeat Sequentally
for All Variables

|t 23)

Iteration: 1 — 3, ..., N

2. Train Regression Model

Uéiné @mﬁi@
Explanatory Variables

1 3 2 |88
3 3 |88
3 28

6. Stabistize
Estimated Values

3. Predict/Impute
Missing Values

AR
— o

1 89 | S0
2 3 |80
32 2|28

With Trained Model

msp 5. Perform Multiple
for All Variations




CHA® (Imputation) &

import numpy as np

import pandas as pd

from sklearn.impute import SimpleImputer, KNNImputer

from sklearn.experimental import enable_iterative_imputer # IterativeImputer AFE 7hsShA &
from sklearn.impute import IterativeImputer

from sklearn.linear_model import BayesianRidge

#
# C|OJE F=H|
#
def make_sample_dataframe() -> pd.DataFrame:
e d S8 S ColHZY My
return pd.DataFrame({
"id": [1, 2, 3, 4, 5, 6, 7],
"age": [23, None, 31, 29, None, 41, 36],
"income": [52000, 61000, None, 58000, 60000, None, 72000],
"city": ["Seoul", "Busan", None, "Daejeon", "Seoul", "Seoul", None],
"hobby": [None, None, "Run", None, "Music", None, None],

#
#
#
o

ef normalize_missing(df: pd.DataFrame) -> pd.DataFrame:
"""None - np.nan Blgt"""
return df.replace({None: np.nan})

def detect_dtypes(df: pd.DataFrame, exclude: list[str] | None = None) -> tuple[list[str], list[str]]:

AT /HEY 2 e
exclude = exclude or []

num_cols = [c for c in df.select_dtypes(include=[np.number]).columns if c not in exclude]
cat_cols = [c for c in df.select_dtypes(exclude=[np.number]).columns if c not in exclude]
return num_cols, cat_cols

def missing_report(df: pd.DataFrame) -> pd.DataFrame:
T HE R0 AEE 2EEN
return pd.DataFrame({
"missing_count”: df.isna().sum(),
"missing_rate": (df.isna().mean() * 100).round(2)
}).sort_values("missing_rate", ascending=False)

#
# ASA OfN 2
#
def simple_impute_mean_mode(df: pd.DataFrame) -> pd.DataFrame:
"R OfN: RAIE-EE, AFE-Fpge
df = normalize_missing(df.copy())
num_cols, cat_cols = detect_dtypes(df, exclude=["id"])
if num_cols:
df[num_cols] SimpleImputer(strategy="mean").fit_transform(df[num_cols])
if cat_cols:
df[cat_cols] SimpleImputer(strategy="most_frequent").fit_transform(df[cat_cols])
return df

def knn_impute(df: pd.DataFrame, n_neighbors: int = 3) -> pd.DataFrame:
R T
df = normalize_missing(df.copy())
num_cols, cat_cols = detect_dtypes(df, exclude=["id"])
out = df.copy()
if num_cols:
out[num_cols] = KNNImputer(n_neighbors=n_neighbors).fit_transform(df[num_cols])
if cat_cols:
out[cat_cols] SimpleImputer(strategy="most_frequent").fit_transform(df[cat_cols])
return out

iterative_impute(df: pd.DataFrame) -> pd.DataFrame:
neng| P 718E CHA| (Iterative Imputer)""™
df = normalize_missing(df.copy())
num_cols, cat_cols = detect_dtypes(df, exclude=["id"])
out = df.copy()
if num_cols:
it = IterativeImputer(
estimator=BayesianRidge(),
max_iter=10,
random_state=42,
sample_posterior=True
)
out[num_cols] = it.fit_transform(df[num_cols])
if cat_cols:
out[cat_cols] = SimpleImputer(strategy="most_frequent").fit_transform(out[cat_cols])
return out

main() -> Non
df = make_sample_dataframe()

print("=

print(f"{df}\n

print("Z% ZZE(&)\n")
print(f"{missing_report(df)}\n")

T OHA (Ba/ZEE
= simple_impute_mean_mode(df)
print(f"{df1}\n")
print("Z% 2|ZE(The CHE)\n")
print(f"{missing_report(df1)}\n")

print("- --- KNN 7|HF CHR|

df2 = knn_impute(df, n_neighbors=3)
print(f"{df2}\n")

print("ZZ 2|ZE(KNN)\n")
print(f"{missing_report(df2)}\n")

3|9 7|8t T (Tterative)
df3 = iterative_impute(df)
print(f"{df3.round(2)}\n") # 27| £/ A7
print("Z% 2|XE(Iterative)\n")
print(f"{missing_report(df3)}\n")

if __name__ == "__main__":
main()



id age income city hobby id age income  city hobby
0 1 23.0 52000.0 Seoul None 0 1 23.000000 52000.000000 Seoul Music
1 2 NaN 61000.0 Busan None 1 2 29.333333 61000.000000 Busan Music
2 3 310 NaN None Run 2 3 31.000000 60666.666667 Seoul Run
3 4 29.0 58000.0 Daejeon None 3 4 29.000000 58000.000000 Daejeon Music
4 5 NaN 60000.0 Seoul Music 4 5 29.333333 60000.000000 Seoul Music
5 6 410 NaN Seoul None 5 6 41.000000 60666.666667 Seoul Music
6 7 36.0 720000 None None 6 7 36.000000 72000.000000 Seoul Music
2= CEERSE) Z= 2| ZE(KNN)
missing_count missing_rate missing_count missing_rate
hobby 5 7143 id 0 0.0
income 2 28.57 age 0 0.0
age 2 28.57 income 0 0.0
city 2 28.57 city 0 0.0
id 0 0.00 hobby 0 0.0
—————————— E= A (Ba/xelel) --—------- ---------- 3|3 DJ|Bt CHAl (lterative) ---------
id age income city hobby id age income city hobby
0 1 23.0 52000.0 Seoul Music 0 1 23.00 52000.00 Seoul Music
1 2 320 61000.0 Busan Music 1 2 2157 61000.00 Busan Music
2 3 31.0 60600.0 Seoul Run 2 3 3100 63716.89 Seoul Run
3 4 29.0 58000.0 Daejeon Music 3 4 29.00 58000.00 Daejeon Music
4 5 32.0 60000.0 Seoul Music 4 5 7.87 60000.00 Seoul Music
5 6 41.0 60600.0 Seoul Music 5 6 41.00 59621.37 Seoul Music
6 7 36.0 72000.0 Seoul Music 6 7 36.00 72000.00 Seoul Music
2= 2lEZES= A A= 2| X E(lterative)
missing_count missing_rate missing_count missing_rate
id 0 0.0 id 0 0.0
age 0 0.0 age 0 0.0
income 0 0.0 income 0 0.0
city 0 0.0 city 0 0.0
hobby 0 0.0 hobby 0 0.0
17/ 5
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diagnosis
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ot

27| @ (Systolic BP)

O|2t7| & (Diastolic BP)

& £=X| (Blood Glucose)
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- https://www.deepshark.org/courses/data science/w/04 data preprocessing
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https://www.deepshark.org/courses/data_science/w/04_data_preprocessing
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